Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul;406(19):4663-75.
doi: 10.1007/s00216-014-7870-0. Epub 2014 May 20.

Development and validation of a LC-MS/MS assay for quantitation of plasma citrulline for application to animal models of the acute radiation syndrome across multiple species

Affiliations

Development and validation of a LC-MS/MS assay for quantitation of plasma citrulline for application to animal models of the acute radiation syndrome across multiple species

Jace W Jones et al. Anal Bioanal Chem. 2014 Jul.

Abstract

The potential risk of a radiological catastrophe highlights the need for identifying and validating potential biomarkers that accurately predict radiation-induced organ damage. A key target organ that is acutely sensitive to the effects of irradiation is the gastrointestinal (GI) tract, referred to as the GI acute radiation syndrome (GI-ARS). Recently, citrulline has been identified as a potential circulating biomarker for radiation-induced GI damage. Prior to biologically validating citrulline as a biomarker for radiation-induced GI injury, there is the important task of developing and validating a quantitation assay for citrulline detection within the radiation animal models used for biomarker validation. Herein, we describe the analytical development and validation of citrulline detection using a liquid chromatography tandem mass spectrometry assay that incorporates stable-label isotope internal standards. Analytical validation for specificity, linearity, lower limit of quantitation, accuracy, intra- and interday precision, extraction recovery, matrix effects, and stability was performed under sample collection and storage conditions according to the Guidance for Industry, Bioanalytical Methods Validation issued by the US Food and Drug Administration. In addition, the method was biologically validated using plasma from well-characterized mouse, minipig, and nonhuman primate GI-ARS models. The results demonstrated that circulating citrulline can be confidently quantified from plasma. Additionally, circulating citrulline displayed a time-dependent response for radiological doses covering GI-ARS across multiple species.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources