Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Feb;31(2):113-26.
doi: 10.1002/dmrr.2558.

Role of free radical in atherosclerosis, diabetes and dyslipidaemia: larger-than-life

Affiliations
Review

Role of free radical in atherosclerosis, diabetes and dyslipidaemia: larger-than-life

Randhir Singh et al. Diabetes Metab Res Rev. 2015 Feb.

Abstract

During the past few decades, there have been numerous studies related to free radical chemistry. Free radicals including reactive oxygen species (ROS) and reactive nitrogen species are generated by the human body by various endogenous systems, exposure to different physiochemical conditions, or pathological states, and have been implicated in the pathogenesis of many diseases. These free radicals are also the common by-products of many oxidative biochemical reactions in cells. When free radicals overwhelm the body's ability to regulate them, a condition known as oxidative stress ensues. They adversely alter lipids, proteins, and DNA, which trigger a number of human diseases. In a number of pathophysiological conditions, the delicate equilibrium between free radical production and antioxidant capability is distorted, leading to oxidative stress and increased tissue injury. ROS which are mainly produced by vascular cells are implicated as possible underlying pathogenic mechanisms in a progression of cardiovascular diseases including ischemic heart disease, atherosclerosis, cardiac arrhythmia, hypertension, and diabetes. This review summarizes the key roles played by free radicals in the pathogenesis of atherosclerosis, diabetes, and dyslipidaemia. Although not comprehensive, this review also provides a brief perspective on some of the current research being conducted in this area for a better understanding of the role free radicals play in the pathogenesis of atherosclerosis, diabetes, and dyslipidaemia.

Keywords: ROS; atherosclerosis; diabetes; dyslipidaemia; free radicals.

PubMed Disclaimer

MeSH terms

LinkOut - more resources