Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Sep 15;30(18):2644-51.
doi: 10.1093/bioinformatics/btu302. Epub 2014 May 21.

Accurate cell segmentation in microscopy images using membrane patterns

Affiliations

Accurate cell segmentation in microscopy images using membrane patterns

Sotiris Dimopoulos et al. Bioinformatics. .

Abstract

Motivation: Identifying cells in an image (cell segmentation) is essential for quantitative single-cell biology via optical microscopy. Although a plethora of segmentation methods exists, accurate segmentation is challenging and usually requires problem-specific tailoring of algorithms. In addition, most current segmentation algorithms rely on a few basic approaches that use the gradient field of the image to detect cell boundaries. However, many microscopy protocols can generate images with characteristic intensity profiles at the cell membrane. This has not yet been algorithmically exploited to establish more general segmentation methods.

Results: We present an automatic cell segmentation method that decodes the information across the cell membrane and guarantees optimal detection of the cell boundaries on a per-cell basis. Graph cuts account for the information of the cell boundaries through directional cross-correlations, and they automatically incorporate spatial constraints. The method accurately segments images of various cell types grown in dense cultures that are acquired with different microscopy techniques. In quantitative benchmarks and comparisons with established methods on synthetic and real images, we demonstrate significantly improved segmentation performance despite cell-shape irregularity, cell-to-cell variability and image noise. As a proof of concept, we monitor the internalization of green fluorescent protein-tagged plasma membrane transporters in single yeast cells.

Availability and implementation: Matlab code and examples are available at http://www.csb.ethz.ch/tools/cellSegmPackage.zip.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms