Genomics of wood-degrading fungi
- PMID: 24853079
- DOI: 10.1016/j.fgb.2014.05.001
Genomics of wood-degrading fungi
Abstract
Woody plants convert the energy of the sun into lignocellulosic biomass, which is an abundant substrate for bioenergy production. Fungi, especially wood decayers from the class Agaricomycetes, have evolved ways to degrade lignocellulose into its monomeric constituents, and understanding this process may facilitate the development of biofuels. Over the past decade genomics has become a powerful tool to study the Agaricomycetes. In 2004 the first sequenced genome of the white rot fungus Phanerochaete chrysosporium revealed a rich catalog of lignocellulolytic enzymes. In the decade that followed the number of genomes of Agaricomycetes grew to more than 75 and revealed a diversity of wood-decaying strategies. New technologies for high-throughput functional genomics are now needed to further study these organisms.
Keywords: Agaricomycetes; Comparative genomics; Fungal genomics; Lignocellulose degradation; Sequencing; Wood decay.
Copyright © 2014 Elsevier Inc. All rights reserved.
Similar articles
-
Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi.Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9923-8. doi: 10.1073/pnas.1400592111. Epub 2014 Jun 23. Proc Natl Acad Sci U S A. 2014. PMID: 24958869 Free PMC article.
-
Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize.BMC Genomics. 2012 Sep 2;13:444. doi: 10.1186/1471-2164-13-444. BMC Genomics. 2012. PMID: 22937793 Free PMC article.
-
Distinct Growth and Secretome Strategies for Two Taxonomically Divergent Brown Rot Fungi.Appl Environ Microbiol. 2017 Mar 17;83(7):e02987-16. doi: 10.1128/AEM.02987-16. Print 2017 Apr 1. Appl Environ Microbiol. 2017. PMID: 28130302 Free PMC article.
-
Xenomic networks variability and adaptation traits in wood decaying fungi.Microb Biotechnol. 2013 May;6(3):248-63. doi: 10.1111/1751-7915.12015. Epub 2013 Jan 2. Microb Biotechnol. 2013. PMID: 23279857 Free PMC article. Review.
-
Lignin-modifying enzymes in filamentous basidiomycetes--ecological, functional and phylogenetic review.J Basic Microbiol. 2010 Feb;50(1):5-20. doi: 10.1002/jobm.200900338. J Basic Microbiol. 2010. PMID: 20175122 Review.
Cited by
-
Risk assessment of fungal materials.Fungal Biol Biotechnol. 2022 Feb 24;9(1):3. doi: 10.1186/s40694-022-00134-x. Fungal Biol Biotechnol. 2022. PMID: 35209958 Free PMC article. Review.
-
Diversity of cytosine methylation across the fungal tree of life.Nat Ecol Evol. 2019 Mar;3(3):479-490. doi: 10.1038/s41559-019-0810-9. Epub 2019 Feb 18. Nat Ecol Evol. 2019. PMID: 30778188 Free PMC article.
-
Plant-polysaccharide-degrading enzymes from Basidiomycetes.Microbiol Mol Biol Rev. 2014 Dec;78(4):614-49. doi: 10.1128/MMBR.00035-14. Microbiol Mol Biol Rev. 2014. PMID: 25428937 Free PMC article. Review.
-
Enhanced degradation of softwood versus hardwood by the white-rot fungus Pycnoporus coccineus.Biotechnol Biofuels. 2015 Dec 18;8:216. doi: 10.1186/s13068-015-0407-8. eCollection 2015. Biotechnol Biofuels. 2015. PMID: 26692083 Free PMC article.
-
The Dark Side of Orchid Symbiosis: Can Tulasnella calospora Decompose Host Tissues?Int J Mol Sci. 2020 Apr 29;21(9):3139. doi: 10.3390/ijms21093139. Int J Mol Sci. 2020. PMID: 32365577 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous