Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun;77(6):872-9.
doi: 10.4315/0362-028X.JFP-13-432.

Biotic and abiotic variables affecting internalization and fate of Escherichia coli O157:H7 isolates in leafy green roots

Affiliations
Free article

Biotic and abiotic variables affecting internalization and fate of Escherichia coli O157:H7 isolates in leafy green roots

Marilyn C Erickson et al. J Food Prot. 2014 Jun.
Free article

Abstract

Preharvest internalization of Escherichia coli O157:H7 into the roots of leafy greens is a food safety risk because the pathogen may be systemically transported to edible portions of the plant. In this study, both abiotic (degree of soil moisture) and biotic (E. coli O157:H7 exposure, presence of Shiga toxin genes, and type of leafy green) factors were examined to determine their potential effects on pathogen internalization into roots of leafy greens. Using field soil that should have an active indigenous microbial community, internalized populations in lettuce roots were 0.8 to 1.6 log CFU/g after exposure to soil containing E. coli O157:H7 at 5.6 to 6.1 log CFU/g. Internalization of E. coli O157:H7 into leafy green plant roots was higher when E. coli O157:H7 populations in soil were increased to 7 or 8 log CFU/g or when the soil was saturated with water. No differences were noted in the extent to which internalization of E. coli O157:H7 occurred in spinach, lettuce, or parsley roots; however, in saturated soil, maximum levels in parsley occurred later than did those in spinach or lettuce. Translocation of E. coli O157:H7 from roots to leaves was rare; therefore, decreases observed in root populations over time were likely the result of inactivation within the plant tissue. Shiga toxin-negative (nontoxigenic) E. coli O157:H7 isolates were more stable than were virulent isolates in soil, but the degree of internalization of E. coli O157:H7 into roots did not differ between isolate type. Therefore, these nontoxigenic isolates could be used as surrogates for virulent isolates in field trials involving internalization.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources