Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Apr 15:2:7.
doi: 10.1186/2051-1426-2-7. eCollection 2014.

Targeting tumor-necrosis factor receptor pathways for tumor immunotherapy

Affiliations
Review

Targeting tumor-necrosis factor receptor pathways for tumor immunotherapy

David A Schaer et al. J Immunother Cancer. .

Abstract

With the success of ipilimumab and promise of programmed death-1 pathway-targeted agents, the field of tumor immunotherapy is expanding rapidly. Newer targets for clinical development include select members of the tumor necrosis factor receptor (TNFR) family. Agonist antibodies to these co-stimulatory molecules target both T and B cells, modulating T-cell activation and enhancing immune responses. In vitro and in vivo preclinical data have provided the basis for continued development of 4-1BB, OX40, glucocorticoid-induced TNFR-related gene, herpes virus entry mediator, and CD27 as potential therapies for patients with cancer. In this review, we summarize the immune response to tumors, consider preclinical and early clinical data on select TNFR family members, discuss potential translational challenges and suggest possible combination therapies with the aim of inducing durable antitumor responses.

Keywords: 4-1BB; Cancer; GITR; Immunotherapy; OX40.

PubMed Disclaimer

References

    1. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbé C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–723. doi: 10.1056/NEJMoa1003466. - DOI - PMC - PubMed
    1. DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T. Expression of tumour-specific antigens underlies cancer immunoediting. Nature. 2012;482:405–409. doi: 10.1038/nature10803. - DOI - PMC - PubMed
    1. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–1570. doi: 10.1126/science.1203486. - DOI - PubMed
    1. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–998. doi: 10.1038/ni1102-991. - DOI - PubMed
    1. Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ, Arthur CD, White JM, Chen YS, Shea LK, Hundal J, Wendl MC, Demeter R, Wylie T, Allison JP, Smyth MJ, Old LJ, Mardis ER, Schreiber RD. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature. 2012;482:400–404. doi: 10.1038/nature10755. - DOI - PMC - PubMed