Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct 1:99:111-21.
doi: 10.1016/j.neuroimage.2014.05.042. Epub 2014 May 23.

Investigating intrinsic connectivity networks using simultaneous BOLD and CBF measurements

Affiliations
Free article

Investigating intrinsic connectivity networks using simultaneous BOLD and CBF measurements

S D Mayhew et al. Neuroimage. .
Free article

Abstract

When the sensory cortex is stimulated and directly receiving afferent input, modulations can also be observed in the activity of other brain regions comprising spatially distributed, yet intrinsically connected networks, suggesting that these networks support brain function during task performance. Such networks can exhibit subtle or unpredictable task responses which can pass undetected by conventional general linear modelling (GLM). Additionally, the metabolic demand of these networks in response to stimulation remains incompletely understood. Here, we recorded concurrent BOLD and CBF measurements during median nerve stimulation (MNS) and compared GLM analysis with independent component analysis (ICA) for identifying the spatial, temporal and metabolic properties of responses in the primary sensorimotor cortex (S1/M1), and in the default mode (DMN) and fronto-parietal (FPN) networks. Excellent spatial and temporal agreement was observed between the positive BOLD and CBF responses to MNS detected by GLM and ICA in contralateral S1/M1. Values of the change in cerebral metabolic rate of oxygen consumption (Δ%CMRO2) and the Δ%CMRO2/Δ%CBF coupling ratio were highly comparable when using either GLM analysis or ICA to extract the contralateral S1/M1 responses, validating the use of ICA for estimating changes in CMRO2. ICA identified DMN and FPN network activity that was not detected by GLM analysis. Using ICA, spatially coincident increases/decreases in both BOLD and CBF signals to MNS were found in the FPN/DMN respectively. Calculation of CMRO2 changes in these networks during MNS showed that the Δ%CMRO2/Δ%CBF ratio is comparable between the FPN and S1/M1 but is larger in the DMN than in the FPN, assuming an equal value of the parameter M in the DMN, FPN and S1/M1. This work suggests that metabolism-flow coupling may differ between these two fundamental brain networks, which could originate from differences between task-positive and task-negative fMRI responses, but might also be due to intrinsic differences between the two networks.

PubMed Disclaimer

Publication types

LinkOut - more resources