Nicotinic ACh receptors in the hippocampal circuit; functional expression and role in synaptic plasticity
- PMID: 24860170
- PMCID: PMC4215767
- DOI: 10.1113/jphysiol.2014.273896
Nicotinic ACh receptors in the hippocampal circuit; functional expression and role in synaptic plasticity
Abstract
Acetylcholine (ACh) can regulate neuronal excitability in the hippocampus, an important area in the brain for learning and memory, by acting on both nicotinic (nAChRs) and muscarinic ACh receptors. The primary cholinergic input to the hippocampus arises from the medial septum and diagonal band of Broca (MS-DBB), and we investigated how their activation regulated hippocampal synaptic plasticity. We found that activation of these endogenous cholinergic inputs can directly induce different forms of hippocampal synaptic plasticity with a timing precision in the millisecond range. Furthermore, we observed a prolonged enhancement of excitability both pre- and postsynaptically. Lastly we found that the presence of the α7 nAChR subtype to both pre- and postsynaptic sites appeared to be required to induce this plasticity. We propose that α7 nAChRs coordinate pre- and postsynaptic activities to induce glutamatergic synaptic plasticity, and thus provide a novel mechanism underlying physiological neuronal communication that could lead to timing-dependent synaptic plasticity in the hippocampus.
© 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Figures
References
-
- Alkondon M, Albuquerque EX. Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes. J Pharmacol Exp Ther. 1993;265:1455–1473. - PubMed
-
- Alkondon M, Albuquerque EX. The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Progr Brain Res. 2004;145:109–120. - PubMed
-
- Alkondon M, Pereira EF, Albuquerque EX. α-Bungarotoxin- and methyllycaconitine-sensitive nicotinic receptors mediate fast synaptic transmission in interneurons of rat hippocampal slices. Brain Res. 1998;810:257–263. - PubMed
-
- Anand R, Peng X, Lindstrom J. Homomeric and native α7 acetylcholine receptors exhibit remarkably similar but non-identical pharmacological properties, suggesting that the native receptor is a heteromeric protein complex. FEBS Lett. 1993;327:241–246. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources