Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May 12:8:257.
doi: 10.3389/fnhum.2014.00257. eCollection 2014.

Monetary rewards modulate inhibitory control

Affiliations

Monetary rewards modulate inhibitory control

Paula M Herrera et al. Front Hum Neurosci. .

Abstract

The ability to override a dominant response, often referred to as behavioral inhibition, is considered a key element of executive cognition. Poor behavioral inhibition is a defining characteristic of several neurological and psychiatric populations. Recently, there has been increasing interest in the motivational dimension of behavioral inhibition, with some experiments incorporating emotional contingencies in classical inhibitory paradigms such as the Go/NoGo and Stop Signal Tasks (SSTs). Several studies have reported a positive modulatory effect of reward on performance in pathological conditions such as substance abuse, pathological gambling, and Attention Deficit Hyperactive Disorder (ADHD). However, experiments that directly investigate the modulatory effects of reward magnitudes on the performance of inhibitory tasks are scarce and little is known about the finer grained relationship between motivation and inhibitory control. Here we probed the effect of reward magnitude and context on behavioral inhibition with three modified versions of the widely used SST. The pilot study compared inhibition performance during six blocks alternating neutral feedback, low, medium, and high monetary rewards. Study One compared increasing vs. decreasing rewards, with low, high rewards, and neutral feedback; whilst Study Two compared low and high reward magnitudes alone also in an increasing and decreasing reward design. The reward magnitude effect was not demonstrated in the pilot study, probably due to a learning effect induced by practice in this lengthy task. The reward effect per se was weak but the context (order of reward) was clearly suggested in Study One, and was particularly strongly confirmed in study two. In addition, these findings revealed a "kick start effect" over global performance measures. Specifically, there was a long lasting improvement in performance throughout the task when participants received the highest reward magnitudes at the beginning of the protocol. These results demonstrate a dynamical behavioral inhibition capacity in humans, as illustrated by the reward magnitude modulation and initial reward history effects.

Keywords: behavioral analysis; cognitive control; inhibition (psychology); reward; stop signal task.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Experimental paradigm description. The Stop Signal Task is composed by a Go stimulus, and a Stop signal after some Go stimuli, demanding the cancellation of an already triggered Go response. In our paradigm, each block has an estimated duration time of 8 min, with slight individual variations depending on the participant responses. Two hundred and ninety Go stimuli (green planes ~160 ms) and 59 Stop Signals (red planets ~160 ms) were presented in a counterbalanced order. (A) Go signal sequence: participants were asked to hit the right or left arrow of a keyboard, depending on the orientation of the plane. (B) Stop Signal appears after the Go Stimulus, in a delay between 250 and 1000 ms. This is called the Stop Signal Delay (SSD). If the participant fails to inhibit, no feedback is shown and the task continues with a new Go stimulus. (C) If the participant manages to withhold the motor response after the Stop Signal, a virtual reward is shown. Each block has a specific reward magnitude (smiley, 5 or 50 cts). Order of presentation of each block depends on the type of Study (see Pilot Study, Study One and Study Two for specific descriptions).
Figure 2
Figure 2
Order effects of Reward for MRT, SSD, and SSRT. MRT (top), SSD (middle), and SSRT (bottom) means and standard errors for Study One and Study Two. (A) Study One blocks in the order of presentation (1, 2, and 3). Increasing condition participants (blue lines) received a smiley for successful inhibition on the first block, then 5 cents and finally 50 cents for the last block. Inverse reward for the decreasing condition group (red line). (B) Study Two blocks in the order of presentation (1, 2, 3, and 4). Increasing condition participants (blue lines) received two 5 cts block for successful inhibition and then two blocks of 50 cents. Inverse reward for the decreasing condition group (red line).
Figure 3
Figure 3
Order effects of Reward for Failed Inhibitions. Means and standard errors for Study One (A) and Study Two (B). Blue bars for Increasing Groups, red bars for Decreasing Groups.

References

    1. Albrecht B., Banaschewski T., Brandeis D., Heinrich H., Rothenberger A. (2005). Response inhibition deficits in externalizing child psychiatric disorders: an ERP-study with the Stop-task. Behav. Brain Funct. 1, 22 10.1186/1744-9081-1-22 - DOI - PMC - PubMed
    1. Alderson M. R., Rapport M. D., Sarver D. E., Kofler M. J. (2008). Attention deficit hyperactive disorder (ADHD) and behavioral inhibition: a re-examination of the stop-signal task. J. Abnorm. Child Psychol. 36, 989–998 10.1007/s10802-008-9230-z - DOI - PubMed
    1. Aron A. R., Fletcher P. C., Bullmore T., Sahakian B. J., Robbins T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat. Neurosci. 6, 115–116 10.1038/nn1003 - DOI - PubMed
    1. Avila C., Parcet M. A. (2001). Personality and inhibitory deficits in the stop-signal task: the mediating role of Gray's anxiety and impulsivity. Pers. Individ. Dif. 31, 975–986 10.1016/S0191-8869(00)00199-9 - DOI
    1. Banaschewski T., Brandeis D., Heinrich H., Albrecht B., Brunner E., Rothenberger A. (2003). Association of Attention Deficit Hyperactive Disorder (ADHD) and conduct disorder–brain electrical evidence for the existence of a distinct subtype. J. Child Psychol. Psychiatry 44, 356–376 10.1111/1469-7610.00127 - DOI - PubMed

LinkOut - more resources