Substrate specificity of the lanthipeptide peptidase ElxP and the oxidoreductase ElxO
- PMID: 24866416
- PMCID: PMC4136673
- DOI: 10.1021/cb5002526
Substrate specificity of the lanthipeptide peptidase ElxP and the oxidoreductase ElxO
Abstract
The final step in lanthipeptide biosynthesis involves the proteolytic removal of an N-terminal leader peptide. In the class I lanthipeptide epilancin 15X, this step is performed by the subtilisin-like serine peptidase ElxP. Bioinformatic, kinetic, and mass spectrometric analysis revealed that ElxP recognizes the stretch of amino acids DLNPQS located near the proteolytic cleavage site of its substrate, ElxA. When the ElxP recognition motif was inserted into the noncognate lanthipeptide precursor NisA, ElxP was able to proteolytically remove the leader peptide from NisA. Proteolytic removal of the leader peptide by ElxP during the biosynthesis of epilancin 15X exposes an N-terminal dehydroalanine on the core peptide of ElxA that hydrolyzes to a pyruvyl group. The short-chain dehydrogenase ElxO reduces the pyruvyl group to a lactyl moiety in the final step of epilancin 15X maturation. Using synthetic peptides, we also investigated the substrate specificity of ElxO and determined the 1.85 Å resolution X-ray crystal structure of the enzyme.
Figures







Similar articles
-
Zn-dependent bifunctional proteases are responsible for leader peptide processing of class III lanthipeptides.Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2533-2538. doi: 10.1073/pnas.1815594116. Epub 2019 Jan 24. Proc Natl Acad Sci U S A. 2019. PMID: 30679276 Free PMC article.
-
Biosynthesis of the antimicrobial peptide epilancin 15X and its N-terminal lactate.Chem Biol. 2011 Jul 29;18(7):857-67. doi: 10.1016/j.chembiol.2011.05.007. Chem Biol. 2011. PMID: 21802007 Free PMC article.
-
Substrate Specificity of the Secreted Nisin Leader Peptidase NisP.Biochemistry. 2017 Aug 1;56(30):4005-4014. doi: 10.1021/acs.biochem.7b00524. Epub 2017 Jul 19. Biochemistry. 2017. PMID: 28675292
-
Specificity of peptidases secreted by filamentous fungi.Bioengineered. 2018 Jan 1;9(1):30-37. doi: 10.1080/21655979.2017.1373531. Epub 2017 Sep 21. Bioengineered. 2018. PMID: 28857638 Free PMC article. Review.
-
Mechanistic aspects of lanthipeptide leaders.Curr Protein Pept Sci. 2013 Mar;14(2):85-96. doi: 10.2174/1389203711314020001. Curr Protein Pept Sci. 2013. PMID: 23441895 Review.
Cited by
-
Zn-dependent bifunctional proteases are responsible for leader peptide processing of class III lanthipeptides.Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2533-2538. doi: 10.1073/pnas.1815594116. Epub 2019 Jan 24. Proc Natl Acad Sci U S A. 2019. PMID: 30679276 Free PMC article.
-
Uncovering the diversity and distribution of biosynthetic gene clusters of prochlorosins and other putative RiPPs in marine Synechococcus strains.Microbiol Spectr. 2024 Jan 11;12(1):e0361123. doi: 10.1128/spectrum.03611-23. Epub 2023 Dec 13. Microbiol Spectr. 2024. PMID: 38088546 Free PMC article.
-
Proteases Involved in Leader Peptide Removal during RiPP Biosynthesis.ACS Bio Med Chem Au. 2023 Dec 13;4(1):20-36. doi: 10.1021/acsbiomedchemau.3c00059. eCollection 2024 Feb 21. ACS Bio Med Chem Au. 2023. PMID: 38404746 Free PMC article. Review.
-
Staphylococcus epidermidis bacteriocin A37 kills natural competitors with a unique mechanism of action.ISME J. 2024 Jan 8;18(1):wrae044. doi: 10.1093/ismejo/wrae044. ISME J. 2024. PMID: 38470311 Free PMC article.
-
Investigation into the mechanism of action of the antimicrobial peptide epilancin 15X.Front Microbiol. 2023 Nov 2;14:1247222. doi: 10.3389/fmicb.2023.1247222. eCollection 2023. Front Microbiol. 2023. PMID: 38029153 Free PMC article.
References
-
- Arnison P. G.; Bibb M. J.; Bierbaum G.; Bowers A. A.; Bugni T. S.; Bulaj G.; Camarero J. A.; Campopiano D. J.; Challis G. L.; Clardy J.; Cotter P. D.; Craik D. J.; Dawson M.; Dittmann E.; Donadio S.; Dorrestein P. C.; Entian K.-D.; Fischbach M. A.; Garavelli J. S.; Göransson U.; Gruber C. W.; Haft D. H.; Hemscheidt T. K.; Hertweck C.; Hill C.; Horswill A. R.; Jaspars M.; Kelly W. L.; Klinman J. P.; Kuipers O. P.; Link A. J.; Liu W.; Marahiel M. A.; Mitchell D. A.; Moll G. N.; Moore B. S.; Müller R.; Nair S. K.; Nes I. F.; Norris G. E.; Olivera B. M.; Onaka H.; Patchett M. L.; Piel J.; Reaney M. J. T.; Rebuffat S.; Ross R. P.; Sahl H.-G.; Schmidt E. W.; Selsted M. E.; Severinov K.; Shen B.; Sivonen K.; Smith L.; Stein T.; Süssmuth R. E.; Tagg J. R.; Tang G.-L.; Truman A. W.; Vederas J. C.; Walsh C. T.; Walton J. D.; Wenzel S. C.; Willey J. M.; van der Donk W. A. (2013) Ribosomally synthesized and post-translationally modified peptide natural products: Overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160. - PMC - PubMed
-
- Schnell N.; Entian K.-D.; Schneider U.; Götz F.; Zahner H.; Kellner R.; Jung G. (1988) Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature 333, 276–278. - PubMed
-
- van der Meer J. R.; Rollema H. S.; Siezen R. J.; Beerthuyzen M. M.; Kuipers O. P.; de Vos W. M. (1994) Influence of amino acid substitutions in the nisin leader peptide on biosynthesis and secretion of nisin by Lactococcus lactis. J. Biol. Chem. 269, 3555–3562. - PubMed
-
- Li B.; Yu J. P.; Brunzelle J. S.; Moll G. N.; van der Donk W. A.; Nair S. K. (2006) Structure and mechanism of the lantibiotic cyclase involved in nisin biosynthesis. Science 311, 1464–1467. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources