Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Aug;47(8):424-32.
doi: 10.5483/bmbrep.2014.47.8.119.

Poly (ADP-ribose) in the pathogenesis of Parkinson's disease

Affiliations
Review

Poly (ADP-ribose) in the pathogenesis of Parkinson's disease

Yunjong Lee et al. BMB Rep. 2014 Aug.

Abstract

The defining feature of Parkinson's disease is a progressive and selective demise of dopaminergic neurons. A recent report on Parkinson's disease animal model demonstrates that poly (ADP-ribose) (PAR) dependent cell death, also named parthanatos, is accountable for selective dopaminergic neuronal loss. Parthanatos is a programmed necrotic cell death, characterized by PARP1 activation, apoptosis inducing factor (AIF) nuclear translocation, and large scale DNA fragmentation. Besides cell death regulation via interaction with AIF, PAR molecule mediates diverse cellular processes including genomic stability, cell division, transcription, epigenetic regulation, and stress granule formation. In this review, we will discuss the roles of PARP1 activation and PAR molecules in the pathological processes of Parkinson's disease. Potential interaction between PAR molecule and Parkinson's disease protein interactome are briefly introduced. Finally, we suggest promising points of therapeutic intervention in the pathological PAR signaling cascade to halt progression in Parkinson's disease.

PubMed Disclaimer

Figures

Fig. 1.
Fig. 1.. Illustration of potential involvement of PAR in the pathophysiology of PD. Excessive PAR synthesis can cause cell death via release of mitochondrial AIF. Subsequent nuclear translocation of AIF is responsible for PAR dependent cell death, or parthanatos. PAR is synthesized in response to PARP1 overactivation. In PD animal models, mitochondrial toxins can lead to calcium influx which is induced by energy imbalance and glutamate release. Intracellular calcium activates nitric oxide (NO) synthase which produces NO. The NO reacts with reactive oxygen species and is converted to peroxynitrite, a potent DNA damaging reagent. DNA damage can stimulate PARP1 activation, leading to dopamine cell loss. Even in the absence of DNA damage, E3 ubiquitin ligase parkin dysfunction and resulting accumulation of the substrate AIMP2 can also enhance PARP1 activity via direct binding. PAR overproduction may affect not only the AIF mediated cell death, but other cellular functions as well, by its interaction with proteins containing the PAR binding motif.
Fig. 2.
Fig. 2.. Gene ontology analysis of PAR and PD protein interactome. By using Cytoscape ClueGo, each common interactor in the Table 1 was functionally annotated. Functional annotations which are highlighted by at least three proteins are presented.

References

    1. Lang A. E., Lozano A. M. Parkinson's disease. Second of two parts. N. Engl. J. Med. (1998);339:1130–1143. doi: 10.1056/NEJM199810153391607. - DOI - PubMed
    1. Lang A. E., Lozano A. M. Parkinson's disease. First of two parts. N. Engl. J. Med. (1998);339:1044–1053. doi: 10.1056/NEJM199810083391506. - DOI - PubMed
    1. Galluzzi L., Aaronson S. A., Abrams J., Alnemri E. S., Andrews D. W., Baehrecke E. H., Bazan N. G., Blagosklonny M. V., Blomgren K., Borner C., Bredesen D. E., Brenner C., Castedo M., Cidlowski J. A., Ciechanover A., Cohen G. M., De Laurenzi V., De Maria R., Deshmukh M., Dynlacht B. D., El-Deiry W. S., Flavell R. A., Fulda S., Garrido C., Golstein P., Gougeon M. L., Green D. R., Gronemeyer H., Hajnoczky G., Hardwick J. M., Hengartner M. O., Ichijo H., Jaattela M., Kepp O., Kimchi A., Klionsky D. J., Knight R. A., Kornbluth S., Kumar S., Levine B., Lipton S. A., Lugli E., Madeo F., Malomi W., Marine J. C., Martin S. J., Medema J. P., Mehlen P., Melino G., Moll U. M., Morselli E., Nagata S., Nicholson D. W., Nicotera P., Nunez G., Oren M., Penninger J., Pervaiz S., Peter M. E., Piacentini M., Prehn J. H., Puthalakath H., Rabinovich G. A., Rizzuto R., Rodrigues C. M., Rubinsztein D. C., Rudel T., Scorrano L., Simon H. U., Steller H., Tschopp J., Tsujimoto Y., Vandenabeele P., Vitale I., Vousden K. H., Youle R. J., Yuan J., Zhivotovsky B., Kroemer G. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death. Differ. (2009);16:1093–1107. doi: 10.1038/cdd.2009.44. - DOI - PMC - PubMed
    1. Schreiber V., Dantzer F., Ame J. C., de Murcia G. Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell Biol. (2006);7:517–528. doi: 10.1038/nrm1963. - DOI - PubMed
    1. Szabo C., Dawson V. L. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends. Pharmacol. Sci. (1998);19:287–298. doi: 10.1016/S0165-6147(98)01193-6. - DOI - PubMed

Publication types

MeSH terms

Substances