The association between race and prostate cancer risk on initial biopsy in an equal access, multiethnic cohort
- PMID: 24879044
- PMCID: PMC4117308
- DOI: 10.1007/s10552-014-0402-6
The association between race and prostate cancer risk on initial biopsy in an equal access, multiethnic cohort
Abstract
Purpose: Population-based studies have established a link between race and prostate cancer (PC) risk, but whether race predicts PC after adjusting for clinical characteristics is unclear. We investigated the association between race and risk of low- and high-grade PC in men undergoing initial prostate biopsy in an equal access medical center.
Methods: We conducted a retrospective record review of 887 men (48.6 % black, 51.4 % white) from the Durham Veterans Affairs Medical Center who underwent initial prostate biopsy between 2001 and 2009. Multivariable logistic regression analysis of race and biopsy outcome was conducted adjusting for age, body mass index, number of cores taken, prostate-specific antigen (PSA), and digital rectal examination findings. Multinomial logistic regression was used to test the association between black race and PC grade (Gleason <7 vs. ≥7).
Results: Black men were younger at biopsy (61 vs. 65 years, p < 0.001) and had a higher pre-biopsy PSA (6.6 vs. 5.8 ng/ml, p = 0.001). A total of 499 men had PC on biopsy (245 low grade; 254 high grade). In multivariable analyses, black race was significantly predictive of PC overall [odds ratio 1.50, p = 0.006] and high-grade PC [relative risk ratio (RRR) 1.84, p = 0.001], but was not significantly associated with low-grade PC (RRR 1.29, p = 0.139).
Conclusion: In an equal access healthcare facility, black race was associated with greater risk of PC detection on initial biopsy and of high-grade PC after adjusting for clinical characteristics. Additional investigation of mechanisms linking black race and PC risk and PC aggressiveness is needed.
Conflict of interest statement
References
-
- Brawley OW, Knopf K, Thompson I. The epidemiology of prostate cancer part II: the risk factors. Semin Urol Oncol. 1998;16(4):193–201. - PubMed
-
- Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N, Yu K, Chatterjee N, Welch R, Hutchinson A, Crenshaw A, Cancel-Tassin G, Staats BJ, Wang Z, Gonzalez-Bosquet J, Fang J, Deng X, Berndt SI, Calle EE, Feigelson HS, Thun MJ, Rodriguez C, Albanes D, Virtamo J, Weinstein S, Schumacher FR, Giovannucci E, Willett WC, Cussenot O, Valeri A, Andriole GL, Crawford ED, Tucker M, Gerhard DS, Fraumeni JF, Jr, Hoover R, Hayes RB, Hunter DJ, Chanock SJ. Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet. 2008;40(3):310–315. doi: 10.1038/ng.91. - DOI - PubMed
-
- Freedland SJ, Humphreys EB, Mangold LA, Eisenberger M, Dorey FJ, Walsh PC, Partin AW. Risk of prostate cancer-specific mortality following biochemical recurrence after radical prostatectomy. JAMA. 2005;294(4):433–439. - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous