Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May 30;9(5):e98776.
doi: 10.1371/journal.pone.0098776. eCollection 2014.

Identification of key residues that confer Rhodobacter sphaeroides LPS activity at horse TLR4/MD-2

Affiliations

Identification of key residues that confer Rhodobacter sphaeroides LPS activity at horse TLR4/MD-2

Katherine L Irvine et al. PLoS One. .

Abstract

The molecular determinants underpinning how hexaacylated lipid A and tetraacylated precursor lipid IVa activate Toll-like receptor 4 (TLR4) are well understood, but how activation is induced by other lipid A species is less clear. Species specificity studies have clarified how TLR4/MD-2 recognises different lipid A structures, for example tetraacylated lipid IVa requires direct electrostatic interactions for agonism. In this study, we examine how pentaacylated lipopolysaccharide from Rhodobacter sphaeroides (RSLPS) antagonises human TLR4/MD-2 and activates the horse receptor complex using a computational approach and cross-species mutagenesis. At a functional level, we show that RSLPS is a partial agonist at horse TLR4/MD-2 with greater efficacy than lipid IVa. These data suggest the importance of the additional acyl chain in RSLPS signalling. Based on docking analysis, we propose a model for positioning of the RSLPS lipid A moiety (RSLA) within the MD-2 cavity at the TLR4 dimer interface, which allows activity at the horse receptor complex. As for lipid IVa, RSLPS agonism requires species-specific contacts with MD-2 and TLR4, but the R2 chain of RSLA protrudes from the MD-2 pocket to contact the TLR4 dimer in the vicinity of proline 442. Our model explains why RSLPS is only partially dependent on horse TLR4 residue R385, unlike lipid IVa. Mutagenesis of proline 442 into a serine residue, as found in human TLR4, uncovers the importance of this site in RSLPS signalling; horse TLR4 R385G/P442S double mutation completely abolishes RSLPS activity without its counterpart, human TLR4 G384R/S441P, being able to restore it. Our data highlight the importance of subtle changes in ligand positioning, and suggest that TLR4 and MD-2 residues that may not participate directly in ligand binding can determine the signalling outcome of a given ligand. This indicates a cooperative binding mechanism within the receptor complex, which is becoming increasingly important in TLR signalling.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors would like to confirm that Nicholas J. Gay is a PLOS ONE Editorial Board member, and that this does not alter their adherence to PLOS ONE Editorial policies and criteria.

Figures

Figure 1
Figure 1. Chemical structures of lipid A derivatives.
A) Lipid A from E. coli. B) Lipid A synthesis intermediate lipid IVa. C) Lipid A from Rhodobacter sphaeroides.
Figure 2
Figure 2. RSLPS is a partial agonist at horse TLR4/MD-2 and competitive antagonist at human TLR4/MD-2.
HEK293 cells were transiently transfected with horse or human TLR4, MD-2 and CD14, together with reporter constructs NF-κB-luc and phRG-TK. Cells were stimulated 48 hours later for 6 hours. Data are from a representative experiment (n = 3 experiments) and expressed as triplicate mean ±SEM for that experiment, relative to the maximum ECLPS response. A and B) Horse TLR4/MD-2/CD14-transfected cells were stimulated with increasing concentrations of RSLPS or increasing concentrations of ECLPS (A), or increasing concentrations of RSLPS+10 ng/ml ECLPS (B). C) Human TLR4/MD-2/CD14-transfected cells were stimulated with increasing concentrations of ECLPS in the presence of 0, 1, 10 and 100 ng/ml RSLPS.
Figure 3
Figure 3. RSLPS requires specific residues within horse MD-2 and TLR4, yet is independent of CD14.
HEK293 cells were transiently transfected with combinations of human and horse TLR4 and MD-2, with or without horse CD14, and reporter constructs NF-κB-luc and phRG-TK. Cells were stimulated 48 hours later for 6 hours with 100 ng/ml RSLPS, 10 ng/ml ECLPS, 100 ng/ml RSLPS+10 ng/ml ECLPS, or medium alone. Data are from a representative experiment (n = 3 experiments) and expressed as triplicate mean ±SEM for that experiment, relative to the maximum ECLPS response. A) Cells were transfected with different combinations of human and horse TLR4 and MD-2. B) Horse TLR4/MD-2 was transfected with and without CD14. C) MD-2 mutants were transfected with horse TLR4/CD14. D) TLR4 mutants were transfected with horse MD-2/CD14.
Figure 4
Figure 4. RSLA and lipid IVa sit differently within the MD-2 pocket.
A) Docking models of RSLA and lipid IVa bound to horse TLR4/MD-2 were overlaid to assess ligand and receptor positioning. The acyl chains of RSLA (blue) sit more deeply in the MD-2 (pink) pocket than lipid IVa (green), and the R2 chain of RSLA protrudes from the MD-2 pocket to contact TLR4* (grey). The 1-PO4 is also moved away from TLR4 due to lowering of the diglucosamine backbone. B) Overlay of RSLA (blue; horse model), lipid IVa (green; horse model) and lipid A (red; human crystal) in situ in the MD-2 pocket. TLR4 and MD-2 have been removed for clarity. The PO4 groups and acyl chains of all three ligands sit somewhat differently to one another within the pocket. Lipid A and RSLA appear to occupy a similar volume within the pocket.
Figure 5
Figure 5. RSLPS activity requires the presence of both R385 and P442 in horse TLR4.
HEK293 cells were transiently transfected with combinations of human and horse TLR4 and MD-2, together with horse CD14 and reporter constructs NF-κB-luc and phRG-TK. Cells were stimulated 48 hours later for 6 hours. Data are from a representative experiment (n = 3 experiments) and expressed as triplicate mean ±SEM for that experiment, relative to the maximum ECLPS response. A) TLR4 point mutants were transfected with horse MD-2/CD14 and stimulated with 100 ng/ml RSLPS, 10 ng/ml ECLPS, 100 ng/ml RSLPS+10 ng/ml ECLPS or medium alone. B) TLR4 point mutants were transfected with horse MD-2/CD14 and stimulated with 1 µg/ml lipid IVa, 1 µg/ml lipid IVa+10 ng/ml ECLPS, or medium alone.

References

    1. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11: 373–384. - PubMed
    1. Poltorak A, Smirnova I, He X, Liu M, Van Huffel C, et al. (1998) Genetic and physical mapping of the Lps locus: identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol Dis 24: 340–355. - PubMed
    1. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, et al. (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. JExp Med 189: 1777–1782. - PMC - PubMed
    1. Park B, Song D, Kim H, Choi B, Lee H, et al. (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458: 1191–1195. - PubMed
    1. Ohto U, Fukase K, Miyake K, Shimizu T (2012) Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proc Natl Acad Sci U S A 109: 7421–7426. - PMC - PubMed

Publication types