Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul 7;6(13):7424-9.
doi: 10.1039/c4nr01611d.

Free-standing electrochemical electrode based on Ni(OH)2/3D graphene foam for nonenzymatic glucose detection

Affiliations

Free-standing electrochemical electrode based on Ni(OH)2/3D graphene foam for nonenzymatic glucose detection

Beibei Zhan et al. Nanoscale. .

Abstract

Three-dimensional graphene foam (3DGF) is a superior sensing material because of its high conductivity, large specific surface area and wide electrochemical potential windows. In this work, hexagonal Ni(OH)2 nanosheets are deposited on the surface of chemical vapor deposition-grown 3DGF through a facial hydrothermal process without any auxiliary reagents. The morphology and structure of the composite are characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Raman spectroscopy, and X-ray diffraction (XRD). Based on the Ni(OH)2/3DGF composite, a free-standing electrochemical electrode is fabricated. Being employed as a nonenzymatic glucose detection electrochemical electrode, it exhibits a high sensitivity (∼2.65 mA mM(-1) cm(-2)), low detection limit (0.34 μM) and excellent selectivity with a linear response from 1 μM to 1.17 mM. The excellent sensing properties of the Ni(OH)2/3DGF electrode may be attributed to the synergistic effect of the high electrocatalytic activity of Ni(OH)2 nanosheets and the high conductivity and large surface area of 3DGF.

PubMed Disclaimer

Publication types

LinkOut - more resources