Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2014 May 4:14:62.
doi: 10.1186/1471-2261-14-62.

The relation of location-specific epicardial adipose tissue thickness and obstructive coronary artery disease: systemic review and meta-analysis of observational studies

Affiliations
Meta-Analysis

The relation of location-specific epicardial adipose tissue thickness and obstructive coronary artery disease: systemic review and meta-analysis of observational studies

Fu-Zong Wu et al. BMC Cardiovasc Disord. .

Abstract

Background: There is growing evidence about the importance of epicardial adiposity on cardiometabolic risk. However, the relation of location-specific epicardial adipose tissue (EAT) thickness to coronary atherosclerotic burden is still unclear.

Methods: This meta-analysis was used to study the relations between location-specific EAT thickness and obstructive coronary artery disease (CAD). A systemic literature search to identify eligible studies that met the inclusion criteria from the beginning until January 2014 was made. We conducted the meta-analysis of all included 10 published studies. Pre-specified subgroup analyses were performed according to ethnicity, body mass index, diagnostic tools for CAD, and measurement tool if presence of high heterogeneity between studies. Potential publication bias was also assessed.

Results: We identified ten observed studies with a total of 1625 subjects for planned comparison. With regard to the association between obstructive CAD and location-specific EAT thickness at the right ventricular free wall, caution is warranted. The pooled estimate showed that location-specific EAT thickness at the right ventricular free wall was significantly higher in the CAD group than non-CAD group (standardized mean difference (SMD): 0.70 mm, 95% CI: 0.26-1.13, P = 0.002), although heterogeneity was high (I2 = 93%). It should be clear that only the result of echocardiography-based studies showed a significant association (SMD: 0.98 mm, 95% CI: 0.43-1.53, P = 0.0005), and the result of all included CT-based studies showed a non-significant association (SMD: 0.06 mm, 95% CI: -0.12-0.25, P = 0.50). In the subgroup analysis, the "diagnostic tools for CAD" or "measurement tool of EAT thickness" are potential major sources of heterogeneity between studies. With regard to location-specific EAT thickness at the left atrioventricular (AV) groove, it was significantly higher in the CAD group than non-CAD group (SMD: 0.74 mm, 95% CI: 0.55-0.92, P <0.00001; I2 = 0%).

Conclusion: Our meta-analysis suggests that significantly elevated location-specific EAT thickness at the left AV groove is associated with obstructive CAD. Based on the current evidence, the location-specific EAT thickness at the left AV groove appears to be a good predictor in obstructive CAD, especially in Asian populations. Furthermore well-designed studies are warranted because of the current limited number of studies.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Flowchart of study selection process to determine the studies to be included in the meta-analysis. EAT, epicardial adipose tissue.
Figure 2
Figure 2
Forest plot for SMD (random-effect model) in location-specific EAT thickness at the right ventricular free wall between CAD and non-CAD group in the overall meta-analysis (including nine published studies). In addition, subgroup analyses were assessed by the measurement tool of EAT thickness (echocardiography or CT). SMD, standardized mean difference; CAD, coronary artery disease; EAT, epicardial adipose tissue.
Figure 3
Figure 3
Meta-regression analysis between BMI and SMD of location-specific EAT thickness at right ventricular free wall. BMI, body mass index; SMD, standardized mean difference; EAT, epicardial adipose tissue.
Figure 4
Figure 4
Forest plot for SMD in location-specific EAT thickness at the left AV groove between CAD and non-CAD groups in the meta-analysis (including three published studies). SMD, standardized mean difference; CAD, coronary artery disease; EAT, epicardial adipose tissue; AV, atrioventricular.

References

    1. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, Sarov-Blat L, O’Brien S, Keiper EA, Johnson AG, Martin J, Goldstein BJ, Shi Y. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108(20):2460–2466. doi: 10.1161/01.CIR.0000099542.57313.C5. - DOI - PubMed
    1. Baker A, da Silva N, Quinn D, Harte A, Pagano D, Bonser R, Kumar S, McTernan P. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol. 2006;5(1):1–7. doi: 10.1186/1475-2840-5-1. - DOI - PMC - PubMed
    1. Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J. 2007;153(6):907–917. doi: 10.1016/j.ahj.2007.03.019. - DOI - PubMed
    1. Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005;2(10):536–543. doi: 10.1038/ncpcardio0319. - DOI - PubMed
    1. Iacobellis G, Pistilli D, Gucciardo M, Leonetti F, Miraldi F, Brancaccio G, Gallo P, di Gioia CR. Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease. Cytokine. 2005;29(6):251–255. - PubMed

Publication types

MeSH terms