Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May 28:13:199.
doi: 10.1186/1475-2875-13-199.

Patterns of malaria indices across three consecutive seasons in children in a highly endemic area of West Africa: a three times-repeated cross-sectional study

Affiliations

Patterns of malaria indices across three consecutive seasons in children in a highly endemic area of West Africa: a three times-repeated cross-sectional study

Denis-Luc Ardiet et al. Malar J. .

Abstract

Objectives: To study the manifestations of Plasmodium infection, and its relations with the malaria disease, especially when comparing dry and rainy seasons in a hyperendemic area of West Africa.

Methods: The study was carried out in an area where malaria transmission is high, showing important seasonal variations. One thousand children, representing the total child population (1-12 year old), were observed transversally at the end of three consecutive seasons (dry/rainy/dry). The usual indicators, such as parasite density, splenomegaly, anaemia, or febrile disease were recorded and analysed.

Results: The prevalence of Plasmodium falciparum was high in all age groups and seasons, constantly around 60%. The high transmission season (rainy) showed higher rates of anaemia and spleen enlargement and, in the youngest children only, higher parasite densities. There were also differences between the two dry seasons: in the first one, there was a higher rate of fever than in the second one (p < 0.001). Low parasite density (<2,000 p/μl) was never associated with fever during any season, raising some concern with regard to the usefulness of parasite detection. The possible origins of fever are discussed, together with the potential usefulness of analyzing these indices on a population sample, at a time when fever incidence rises and malaria is one potential cause among others. The distinction to be made between the Plasmodium infection and the malaria disease is highlighted.

Conclusions: These data confirm previous hypotheses of a strong difference in malaria infection and disease between dry and rainy seasons. The most relevant seasonal indicator was not mainly parasite rate and density but anaemia, spleen enlargement, prevalence and possible origin of fever.

Recommendations: In any situation (i.e. fever or not) and especially during the dry season, one must consider that detection of parasites in the blood is only evidence of a Plasmodium infection and not necessarily of a malaria disease. In such a situation, it seems suitable to obtain, through national malaria teams, a well-defined situation of transmission and prevalence of Plasmodium infection following zones and seasons, in order to adapt control strategies. For researchers, a systematic management of data separately for dry and rainy season appears mandatory.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Seasonal variations of severe anemia rates. Bar charts representing the rate of severe anaemia (PCV < 30%) in different age classes over the three consecutive seasons. Two-sided error bars show 95% confidence intervals.
Figure 2
Figure 2
Seasonal variations of splenomegaly. Bar charts representing the distribution of spleen scores during each season. Error bars represent 95% confidence intervals.

Similar articles

Cited by

References

    1. Rougemont A, Boisson ME, Dompnier JP, Martaresche B, Quilici M, Bayle J, Ardissone JP, Defontaine MC, Delmont J. Malaria and anemia of pregnancy in an African savanna zone. Epidemiological, hematological, biological and immunological study of 2 villages of the Bamako region, Republic of Mali. Bull Soc Pathol Exot Filiales. 1977;70:265–273. - PubMed
    1. Guyatt HL, Snow RW. The epidemiology and burden of Plasmodium falciparum-related anemia among pregnant women in sub-Saharan Africa. Am J Trop Med Hyg. 2001;64:36–44. - PubMed
    1. Kwiatkowski DP. How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet. 2005;77:171–192. - PMC - PubMed
    1. Breman JG. The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am J Trop Med Hyg. 2001;64:1–11. - PubMed
    1. Perneger TV, Szeless T, Rougemont A. Utility of the detection of Plasmodium parasites for the diagnosis of malaria in endemic areas. BMC Infect Dis. 2006;6:81. - PMC - PubMed

LinkOut - more resources