Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2014 May 28:14:130.
doi: 10.1186/1471-2431-14-130.

Automated FiO2-SpO2 control system in neonates requiring respiratory support: a comparison of a standard to a narrow SpO2 control range

Affiliations
Randomized Controlled Trial

Automated FiO2-SpO2 control system in neonates requiring respiratory support: a comparison of a standard to a narrow SpO2 control range

Maria Wilinska et al. BMC Pediatr. .

Abstract

Background: Managing the oxygen saturation of preterm infants to a target range has been the standard of care for a decade. Changes in target ranges have been shown to significantly impact mortality and morbidity. Selecting and implementing the optimal target range are complicated not only by issues of training, but also the realities of staffing levels and demands. The potential for automatic control is becoming a reality. Results from the evaluation of different systems have been promising and our own experience encouraging.

Methods: This study was conducted in two tertiary level newborn nurseries, routinely using an automated FiO2-SpO2 control system (Avea-CLiO2, Yorba Linda CA, USA). The aim of this study was to compare the performance of the system as used routinely (set control range of 87-93% SpO2), to a narrower higher range (90-93%). We employed a 12-hour cross-over design with the order of control ranges randomly assigned for each of up to three days. The primary prospectively identified end points were time in the 87-93% SpO2 target range, time at SpO2 extremes and the distribution of the SpO2 exposure.

Results: Twenty-one infants completed the study. The infants were born with a median EGA of 27 weeks and studied at a median age of 17 days and weight of 1.08 kg. Their median FiO2 was 0.32; 8 were intubated, and the rest noninvasively supported (7 positive pressure ventilation and 6 CPAP). The control in both arms was excellent, and required less than 2 manual FiO2 adjustments per day. There were no differences in the three primary endpoints. The narrower/higher set control range resulted in tighter control (IQR 3.0 vs. 4.3 p < 0.001), and less time with the SpO2 between 80-86 (6.2% vs. 8.4%, p = 0.006).

Conclusions: We found that a shift in the median of the set control range of an automated FiO2-SpO2 control system had a proportional effect on the median and distribution of SpO2 exposure. We found that a dramatic narrowing of the set control range had a disproportionally smaller impact. Our study points to the potential to optimize SpO2 targeting with an automated control system.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Histogram of SpO2 exposure for the two Control Ranges. The bar highlights the standard target range (87-93% SpO2).

Similar articles

Cited by

References

    1. Tin W, Milligan WA, Pennefather P, Hey E. Pulse oximetry, severe retinopathy, and outcome at one year in babies of less than 28 weeks gestation. Arch Dis Child Fetal Neonatal Ed. 2001;84:106–110. doi: 10.1136/fn.84.2.F106. - DOI - PMC - PubMed
    1. Deulofeut R, Critz A, Adams-Chapman I, Sola A. Avoiding hyperoxia in infants < or = 1250 g is associated with improved short- and long-term outcomes. J Perinatol. 2006;26(11):700–705. doi: 10.1038/sj.jp.7211608. - DOI - PubMed
    1. Chow LC, Wright KW, Sola A. Can changes in clinical practice decrease the incidence of severe retinopathy of prematurity in very low birth weight infants? Pediatrics. 2003;111(2):339–345. doi: 10.1542/peds.111.2.339. - DOI - PubMed
    1. Askie LM, Henderson-Smart DJ, Irwig L, Simpson JM. Oxygen-saturation targets and outcomes in extremely preterm infants. N Engl J Med. 2003;349:959–967. doi: 10.1056/NEJMoa023080. - DOI - PubMed
    1. Carlo W, Finer N, Walsh M, Rich W, Gantz M, Laptook A, Yoder B, Faix R, Das A, Poole W. Target ranges of oxygen saturation in extremely preterm infants. New Engl J Med. 2010;362(21):1959–1969. - PMC - PubMed

Publication types