Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May 7:10:108.
doi: 10.1186/1746-6148-10-108.

Phylogeny of Mycoplasma bovis isolates from Hungary based on multi locus sequence typing and multiple-locus variable-number tandem repeat analysis

Affiliations

Phylogeny of Mycoplasma bovis isolates from Hungary based on multi locus sequence typing and multiple-locus variable-number tandem repeat analysis

Kinga M Sulyok et al. BMC Vet Res. .

Abstract

Background: Mycoplasma bovis is an important pathogen causing pneumonia, mastitis and arthritis in cattle worldwide. As this agent is primarily transmitted by direct contact and spread through animal movements, efficient genotyping systems are essential for the monitoring of the disease and for epidemiological investigations. The aim of this study was to compare and evaluate the multi locus sequence typing (MLST) and the multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA) through the genetic characterization of M. bovis isolates from Hungary.

Results: Thirty one Hungarian M. bovis isolates grouped into two clades by MLST. Two strains had the same sequence type (ST) as reference strain PG45, while the other twenty nine Hungarian isolates formed a novel clade comprising five subclades. Isolates originating from the same herds had the same STs except for one case. The same isolates formed two main clades and several subclades and branches by MLVA. One clade contained the reference strain PG45 and three isolates, while the other main clade comprised the rest of the strains. Within-herd strain divergence was also detected by MLVA. Little congruence was found between the results of the two typing systems.

Conclusions: MLST is generally considered an intermediate scale typing method and it was found to be discriminatory among the Hungarian M. bovis isolates. MLVA proved to be an appropriate fine scale typing tool for M. bovis as this method was able to distinguish closely related strains isolated from the same farm. We recommend the combined use of the two methods for the genotyping of M. bovis isolates. Strains have to be characterized first by MLST followed by the fine scale typing of identical STs with MLVA.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Genetic relationships between M. bovis strains based on multi locus sequence typing. Neighbour-joining phylogenetic tree showing relationships between the concatenated partial sequences of four housekeeping genes obtained from M. bovis strains characterized in this study (Hungary) and deposited in GenBank. Panels A and B indicate the major clades. Bootstrap values of neighbour-joining (1000 replicates) of > 70 are shown. The scale bar represents the average number of substitutions per site.
Figure 2
Figure 2
Genetic relationships between M. bovis strains based on multiple-locus variable-number tandem repeat analysis. Genetic relationships between thirty-one Hungarian isolates and the reference strain PG45 based on multiple-locus variable-number tandem repeat analysis. Dendrogram was constructed with the neighbour-joining method based on pairwise distances. The scale bar represents the average number of substitutions per site.
Figure 3
Figure 3
Genetic relationships between M. bovis strains based on the combined use of multi locus sequence typing (MLST, A) and multiple-locus variable-number tandem-repeat analysis (MLVA, B). Dendrograms were constructed with neighbour-joining methods. Scale bars represent the average number of substitutions per site.

References

    1. Caswell JL, Bateman KG, Cai HY, Castillo-Alcala F. Mycoplasma bovis in respiratory disease of feedlot cattle. Vet Clin North Am Food Anim Pract. 2010;26:365–379. doi: 10.1016/j.cvfa.2010.03.003. - DOI - PubMed
    1. Maunsell FP, Donovan GA. Mycoplasma bovis infections in young calves. Vet Clin North Am Food Anim Pract. 2009;25:139–177. doi: 10.1016/j.cvfa.2008.10.011. - DOI - PubMed
    1. Byrne WJ, Ball HJ, Brice N, McCormack R, Baker SE, Ayling RD, Nicholas RA. Application of an indirect ELISA to milk samples to identify cows with Mycoplasma bovis mastitis. Vet Rec. 2000;146:368–369. doi: 10.1136/vr.146.13.368. - DOI - PubMed
    1. Pfützner H, Sachse K. Mycoplasma bovis as an agent of mastitis, pneumonia, arthritis and genital disorders in cattle. Rev Sci Tech. 1996;15:1477–1494. - PubMed
    1. Nicholas RA, Ayling RD. Mycoplasma bovis: disease, diagnosis, and control. Res Vet Sci. 2003;74:105–112. doi: 10.1016/S0034-5288(02)00155-8. - DOI - PubMed

Publication types