Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May 30;3(2):546-62.
doi: 10.3390/cells3020546.

Role of Ubiquitylation in Controlling Suppressor of Cytokine Signalling 3 (SOCS3) Function and Expression

Affiliations

Role of Ubiquitylation in Controlling Suppressor of Cytokine Signalling 3 (SOCS3) Function and Expression

Jamie J L Williams et al. Cells. .

Abstract

The realisation that unregulated activation of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is a key driver of a wide range of diseases has identified its components as targets for therapeutic intervention by small molecule inhibitors and biologicals. In this review, we discuss JAK-STAT signalling pathway inhibition by the inducible inhibitor "suppressor of cytokine signaling 3 (SOCS3), its role in diseases such as myeloproliferative disorders, and its function as part of a multi-subunit E3 ubiquitin ligase complex. In addition, we highlight potential applications of these insights into SOCS3-based therapeutic strategies for management of conditions such as vascular re-stenosis associated with acute vascular injury, where there is strong evidence that multiple processes involved in disease progression could be attenuated by localized potentiation of SOCS3 expression levels.

PubMed Disclaimer

Figures

Figure 1
Figure 1
SOCS3-mediated inhibition of IL-6 signalling interaction of IL-6 with a membrane-bound IL-6 receptor (IL-6Rα) and gp130 dimers triggers activation of gp130-bound JAKs, which then phosphorylate gp130 on key cytoplasmic Tyr residues that act as docking sites for SH2 domain-mediated interaction with target proteins. These include four pYXXQ motifs that recruit STAT proteins (predominantly STAT3) and a pY759STV (human sequence) motif responsible for binding protein Tyr phosphatase SHP2. Recruited SHP2 and STATs are then phosphorylated by activated JAKs (e.g., STAT3 is phosphorylated on Tyr705). JAK-phosphorylated STATs then dimerise and translocate to the nucleus to initiate transcription of target genes. One of the induced genes encodes SOCS3, which can then interact with Tyr759-phosphorylated gp130 to terminate IL-6 signalling predominantly via two mechanisms; KIR (kinase inhibitory region)-mediated inhibition of receptor-bound JAKs (1), and formation of an E3 ubiquitin ligase complex that ubiquitylates target proteins for subsequent degradation by the proteasome (2).
Figure 2
Figure 2
Structural organisation and homology modelling of an ECSSOCS3 complex A. Organisation of domains within SOCS3: the numbering is for human SOCS3. Domains include an extended N-terminal region, the kinase inhibitory region (KIR), an extended SH2 sub-domain (ESS) which precedes the central SH2 domain, and the SOCS box, which includes BC box and Cul box sub-domains important for binding the elongins and cullin proteins and forming the E3 ubiquitin ligase complex. Also labelled is a PEST sequence within the C-terminal region of the SH2 domain. B. Structural homology model of the ECSSOCS3 E3 ubiquitin ligase complex. The central cullin 5 scaffold protein positions the E2 conjugating enzyme in close proximity to SOCS3, which binds a target substrate (not shown) via its SH2 domain. SOCS3 is attached to cullin 5 both directly (via the Cul box) and indirectly through the elongin B/elongin C heterodimer. The triple α-helical structure of the C-terminal domain SOCS box forms a four-helix bundle with α-helix 4 of elongin C. Reproduced from [28]. You jumped the numbers in between.with permission.

References

    1. Heinrich P.C., Behrmann I., Haan S., Hermanns H.M., Müller-Newen G., Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 2003;374:1–20. doi: 10.1042/BJ20030407. - DOI - PMC - PubMed
    1. Stark G.R., Darnell J.E., Jr. The JAK-STAT pathway at twenty. Immunity. 2012;36:503–514. doi: 10.1016/j.immuni.2012.03.013. - DOI - PMC - PubMed
    1. Eulenfeld R., Dittrich A., Khouri C., Müller P.J., Mütze B., Wolf A., Schaper F. Interleukin-6 signalling: More than JAKs and STATs. Eur. J. Cell. Biol. 2012;91:486–495. doi: 10.1016/j.ejcb.2011.09.010. - DOI - PubMed
    1. Fonseca J.E., Santos M.J., Canhão H., Choy E. Interleukin-6 as a key player in systemic inflammation and joint destruction. Autoimmun. Rev. 2009;8:538–542. doi: 10.1016/j.autrev.2009.01.012. - DOI - PubMed
    1. Ortiz-Muñoz G., Martin-Ventura J.L., Hernandez-Vargas P., Mallavia B., Lopez-Parra V., Lopez-Franco O., Muñoz-Garcia B., Fernandez-Vizarra P., Ortega L., Egido J., et al. Suppressors of cytokine signaling modulate JAK/STAT-mediated cell responses during atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2009;29:525–531. doi: 10.1161/ATVBAHA.108.173781. - DOI - PubMed

LinkOut - more resources