Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2014 Sep;21(18):10983-96.
doi: 10.1007/s11356-014-3083-5. Epub 2014 Jun 3.

Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution

Affiliations
Comparative Study

Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution

Waseem Hassan et al. Environ Sci Pollut Res Int. 2014 Sep.

Abstract

Lead (Pb) pollution is appearing as an alarming threat nowadays. Excessive Pb concentrations in agricultural soils result in minimizing the soil fertility and health which affects the plant growth and leads to decrease in crop production. Plant growth promoting rhizobacteria (PGPR) are beneficial bacteria which can protect the plants against many abiotic stresses, and enhance the growth. The study aimed to identify important rhizobacterial strains by using the 1-aminocyclopropane-1-carboxylate (ACC) enrichment technique and examine their inoculation effects in the growth promotion of maize, under Pb pollution. A pot experiment was conducted and six rhizobacterial isolates were used. Pb was added to 2 kg soil in each pot (with 4 seeds/pot) using Pb(NO3)2 at the rate of 0, 100, 200, 300, and 400 mg kg(-1) Pb with three replications in completely randomized design. Rhizobacterial isolates performed significantly better under all Pb levels, i.e., 100 to 400 Pb mg kg(-1) soil, compared to control. Comparing the efficacy of the rhizobacterial isolates under different Pb levels, rhizobacterial isolates having both ACC-deaminase and nitrogen-fixing activities (AN8 and AN12) showed highest increase in terms of the physical, chemical and enzymatic growth parameters of maize, followed by the rhizobacterial isolates having ACC-deaminase activity only (ACC5 and ACC8), and then the nitrogen-fixing rhizobia (Azotobacter and RN5). However, the AN8 isolate showed maximum efficiency, and highest shoot and root length (14.2 and 6.1 cm), seedling fresh and dry weights (1.91 and 0.14 g), chlorophyll a, b, and carotenoids (24.1, 30.2 and 77.7 μg/l), protein (0.82 mg/g), proline (3.42 μmol/g), glutathione S-transferase, peroxidase and catalase (12.3, 4.2 and 7.2 units/mg protein), while the lowest Pb uptake in the shoot and root (0.83 and 0.48 mg/kg) were observed under this rhizobial isolate at the highest Pb level (i.e., 400 Pb mg kg(-1) soil). The results revealed that PGPR significantly decreases the deleterious effects of Pb pollution and increases the maize growth under all Pb concentrations, i.e., 100-400 Pb mg kg(-1) soil. PGPR chelate the Pb in the soil, and ultimately influence its bioavailability, release and uptake. The PGPR having both ACC-deaminase and nitrogen-fixing abilities are more effective and resistive against Pb pollution than PGPR having either ACC-deaminase or nitrogen-fixing activity alone. The ACC enrichment technique is an efficient approach to select promising PGPR.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Chemosphere. 2006 Feb;62(5):741-8 - PubMed
    1. J Microbiol Biotechnol. 2008 May;18(5):958-63 - PubMed
    1. Plant Physiol. 1995 Apr;107(4):1333-41 - PubMed
    1. Ecotoxicol Environ Saf. 2005 Sep;62(1):118-27 - PubMed
    1. Scientifica (Cairo). 2012;2012:963401 - PubMed

Publication types

LinkOut - more resources