Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Jun 4:7:43.
doi: 10.1186/1756-6606-7-43.

Genes and signaling pathways involved in memory enhancement in mutant mice

Affiliations
Review

Genes and signaling pathways involved in memory enhancement in mutant mice

Yong-Seok Lee. Mol Brain. .

Abstract

Mutant mice have been used successfully as a tool for investigating the mechanisms of memory at multiple levels, from genes to behavior. In most cases, manipulating a gene expressed in the brain impairs cognitive functions such as memory and their underlying cellular mechanisms, including synaptic plasticity. However, a remarkable number of mutations have been shown to enhance memory in mice. Understanding how to improve a system provides valuable insights into how the system works under normal conditions, because this involves understanding what the crucial components are. Therefore, more can be learned about the basic mechanisms of memory by studying mutant mice with enhanced memory. This review will summarize the genes and signaling pathways that are altered in the mutants with enhanced memory, as well as their roles in synaptic plasticity. Finally, I will discuss how knowledge of memory-enhancing mechanisms could be used to develop treatments for cognitive disorders associated with impaired plasticity.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Molecules involved in memory enhancement. Signaling pathways in the presynaptic axonal terminal and the postsynaptic dendritic spine and nucleus are illustrated in a simplified manner. Green and red arrows indicate positive and negative regulations, respectively. Memory is enhanced either by the over expression/activation of molecules colored in green or the deletion/inhibition of molecules in red. The detailed roles of some of these molecules in LTP and memory are described in the text. Cbl-b, casitas B-lineage lymphoma-b; NCX2, Na+/Ca2+ exchanger type 2; GAP-43, growth-associated protein 43; tPA, tissue-type plasminogen activator; HB-GAM, heparin-binding growth-associated molecule; MMP-9, Matrix metallopeptidase 9; GABA, γ-aminobutyric acid; MAGL, Monoacylglycerol lipase; CaMKII, calcium calmodulin kinase II; BDNF, Brain-derived neurotrophic factor; Cdk5, Cyclin-dependent kinase 5; Cavβ3, beta intracellular subunit of the voltage-gated calcium channel; PKA, protein kinase A; PDE, phosphodiesterase; PP1, protein phosphatase 1; MAPK, mitogen-activated protein kinase; CaMKIV, calcium calmodulin kinase IV; CN, calcineurin; ATF4, activating transcription factor 4; GCN2, general control nonderepressible 2; p-eIF2α, phosphorylated eukaryotic translation initiation factor 2 subunit α.

Similar articles

Cited by

References

    1. Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, Liu G, Tsien JZ. Genetic enhancement of learning and memory in mice. Nature. 1999;401:63–69. - PubMed
    1. Cao X, Cui Z, Feng R, Tang YP, Qin Z, Mei B, Tsien JZ. Maintenance of superior learning and memory function in NR2B transgenic mice during ageing. Eur J Neurosci. 2007;25:1815–1822. - PubMed
    1. Cui Y, Jin J, Zhang X, Xu H, Yang L, Du D, Zeng Q, Tsien JZ, Yu H, Cao X. Forebrain NR2B overexpression facilitating the prefrontal cortex long-term potentiation and enhancing working memory function in mice. PLoS One. 2011;6:e20312. - PMC - PubMed
    1. Wang D, Cui Z, Zeng Q, Kuang H, Wang LP, Tsien JZ, Cao X. Genetic enhancement of memory and long-term potentiation but not CA1 long-term depression in NR2B transgenic rats. PLoS One. 2009;4:e7486. - PMC - PubMed
    1. Hawasli AH, Benavides DR, Nguyen C, Kansy JW, Hayashi K, Chambon P, Greengard P, Powell CM, Cooper DC, Bibb JA. Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nat Neurosci. 2007;10:880–886. - PMC - PubMed

Publication types

Substances