Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 1;19(7):1105-16.
doi: 10.2741/4270.

Carboxylation-dependent conformational changes of human osteocalcin

Affiliations
Free article

Carboxylation-dependent conformational changes of human osteocalcin

Andrea Cristiani et al. Front Biosci (Landmark Ed). .
Free article

Abstract

Osteocalcin (OCN) is a small noncollagenous protein mainly produced by osteoblasts and is highly represented in bones of most vertebrates. Human OCN contains up to three gamma-carboxyglutamic acid (Gla-OCN) residues at positions 17, 21 and 24 which are thought to increase calcium binding strength, improving mechanical properties of the bone matrix. Recent studies revealed that OCN exerts also important endocrine functions, affecting energy metabolism and male fertility. The latter effect seems to be mediated by the uncarboxylated form of OCN (Glu-OCN). We employed human and mouse OCN as models of fully carboxylated and uncarboxylated OCN forms to investigate, by the use of circular dichroism and molecular dynamics simulations, the respective conformational properties and Ca2+ affinity. Ca2+ binding was found to trigger a similar conformational transition in both Glu-OCN and Gla-OCN, from a disordered structure to a more compact/stable form. Notably, gamma-carboxylation increases the affinity of OCN for Ca2+ by > 30 fold suggesting that, in physiological conditions, Gla-OCN is essentially Ca2+-bound, whereas Glu-OCN circulates mainly in the Ca2+-free form.

PubMed Disclaimer

MeSH terms

LinkOut - more resources