Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane
- PMID: 24896979
- DOI: 10.1021/am5023418
Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane
Abstract
We demonstrate a strategy for surface-enhanced Raman spectroscopy (SERS) of supported lipid membranes with arrays of plasmonic nanoantennas. Colloidal lithography refined with plasma etching is used to synthesize arrays of triangular shaped gold nanoparticles. Reducing the separation distance between the triangle tips leads to plasmonic coupling and to a strong enhancement of the electromagnetic field in the nanotriangle gap. As a result, the Raman scattering intensity of molecules that are located at this plasmonic "hot-spot" can be increased by several orders of magnitude. The nanoantenna array is then embedded with a supported phospholipid membrane which is fluid at room temperature and spans the antenna gap. This configuration offers the advantage that molecules that are mobile within the bilayer membrane can enter the "hot-spot" region via diffusion and can therefore be measured by SERS without static entrapment or adsorption of the molecules to the antenna itself.
Similar articles
-
Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy.Nano Lett. 2014 May 14;14(5):2914-9. doi: 10.1021/nl5009635. Epub 2014 Apr 25. Nano Lett. 2014. PMID: 24754830
-
Out-of-Plane Plasmonic Antennas for Raman Analysis in Living Cells.Small. 2015 Sep;11(36):4632-7. doi: 10.1002/smll.201500891. Epub 2015 Jun 26. Small. 2015. PMID: 26114644
-
Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.J Am Chem Soc. 2013 Jan 9;135(1):301-8. doi: 10.1021/ja309300d. Epub 2012 Dec 27. J Am Chem Soc. 2013. PMID: 23214430
-
Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles.Chem Soc Rev. 2011 Mar;40(3):1296-304. doi: 10.1039/c001054p. Epub 2010 Dec 1. Chem Soc Rev. 2011. PMID: 21125088 Review.
-
Surface-enhanced Raman scattering imaging using noble metal nanoparticles.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013 Mar-Apr;5(2):180-9. doi: 10.1002/wnan.1208. Epub 2013 Jan 17. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013. PMID: 23335562 Review.
Cited by
-
Comparison of Different Neural Network Architectures for Plasmonic Inverse Design.ACS Omega. 2021 Aug 30;6(36):23076-23082. doi: 10.1021/acsomega.1c02165. eCollection 2021 Sep 14. ACS Omega. 2021. PMID: 34549108 Free PMC article.
-
Spatial-Tunable Au Nanoparticle Functionalized Si Nanorods Arrays for Surface Enhanced Raman Spectroscopy.Nanomaterials (Basel). 2020 Jul 4;10(7):1317. doi: 10.3390/nano10071317. Nanomaterials (Basel). 2020. PMID: 32635490 Free PMC article.
-
Large-scale fabrication of achiral plasmonic metamaterials with giant chiroptical response.Beilstein J Nanotechnol. 2016 Jun 24;7:914-25. doi: 10.3762/bjnano.7.83. eCollection 2016. Beilstein J Nanotechnol. 2016. PMID: 27547608 Free PMC article.
-
High performance, single crystal gold bowtie nanoantennas fabricated via epitaxial electroless deposition.Sci Rep. 2023 Aug 7;13(1):12745. doi: 10.1038/s41598-023-38154-1. Sci Rep. 2023. PMID: 37550311 Free PMC article.
-
Plasmonic nanohole array for enhancing the SERS signal of a single layer of graphene in water.Sci Rep. 2017 Oct 25;7(1):14044. doi: 10.1038/s41598-017-14369-x. Sci Rep. 2017. PMID: 29070864 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous