Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014;51(2-3):147-58.
doi: 10.3233/BIR-140657.

Shear sensitive microRNAs and atherosclerosis

Affiliations
Review

Shear sensitive microRNAs and atherosclerosis

Tamas Alexy et al. Biorheology. 2014.

Abstract

Atherosclerosis, the leading cause of morbidity and mortality in developed nations, is a chronic inflammatory disease of arteries. In large and medium-sized vessels, the atherosclerotic burden is focal and non-random, despite the systemic nature of risk factors. This observation has prompted numerous studies over the past two decades that have evaluated the relationship between blood flow, endothelial function and plaque localization. The recent discovery of microRNAs (miRNAs) that are sensitive to distinct flow conditions has added a new layer of complexity to the pathophysiology of atherosclerosis, but may ultimately help us better understand the disease process. In this manuscript we will briefly review the most commonly used in vitro and in vivo model systems developed to study the relationship between flow, endothelial function and plaque development. We will also provide a brief summary of shear sensitive miRNAs that have been shown to modulate inflammatory signaling pathways and atherosclerotic burden through changes in the endothelial gene expression.

Keywords: MiRNA; atherosclerosis; shear stress.

PubMed Disclaimer

Publication types

LinkOut - more resources