Complex reconfiguration of DNA nanostructures
- PMID: 24899518
- PMCID: PMC4235524
- DOI: 10.1002/anie.201402437
Complex reconfiguration of DNA nanostructures
Abstract
Nucleic acids have been used to create diverse synthetic structural and dynamic systems. Toehold-mediated strand displacement has enabled the construction of sophisticated circuits, motors, and molecular computers. Yet it remains challenging to demonstrate complex structural reconfiguration in which a structure changes from a starting shape to another arbitrarily prescribed shape. To address this challenge, we have developed a general structural-reconfiguration method that utilizes the modularly interconnected architecture of single-stranded DNA tile and brick structures. The removal of one component strand reveals a newly exposed toehold on a neighboring strand, thus enabling us to remove regions of connected component strands without the need to modify the strands with predesigned external toeholds. By using this method, we reconfigured a two-dimensional rectangular DNA canvas into diverse prescribed shapes. We also used this method to reconfigure a three-dimensional DNA cuboid.
Keywords: DNA bricks; nanostructures; single-stranded tiles; strand displacement; structural reconfiguration.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Figures




Similar articles
-
Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components.Nature. 2017 Dec 6;552(7683):72-77. doi: 10.1038/nature24648. Nature. 2017. PMID: 29219968 Free PMC article.
-
Complex shapes self-assembled from single-stranded DNA tiles.Nature. 2012 May 30;485(7400):623-6. doi: 10.1038/nature11075. Nature. 2012. PMID: 22660323 Free PMC article.
-
Information-based autonomous reconfiguration in systems of interacting DNA nanostructures.Nat Commun. 2018 Dec 18;9(1):5362. doi: 10.1038/s41467-018-07805-7. Nat Commun. 2018. PMID: 30560865 Free PMC article.
-
Dynamic DNA nanotechnology using strand-displacement reactions.Nat Chem. 2011 Feb;3(2):103-13. doi: 10.1038/nchem.957. Nat Chem. 2011. PMID: 21258382 Review.
-
Principles and Applications of Nucleic Acid Strand Displacement Reactions.Chem Rev. 2019 May 22;119(10):6326-6369. doi: 10.1021/acs.chemrev.8b00580. Epub 2019 Feb 4. Chem Rev. 2019. PMID: 30714375 Review.
Cited by
-
Building machines with DNA molecules.Nat Rev Genet. 2020 Jan;21(1):5-26. doi: 10.1038/s41576-019-0175-6. Epub 2019 Oct 21. Nat Rev Genet. 2020. PMID: 31636414 Free PMC article. Review.
-
Fuel-Driven Transient DNA Strand Displacement Circuitry with Self-Resetting Function.J Am Chem Soc. 2020 Dec 16;142(50):21102-21109. doi: 10.1021/jacs.0c09681. Epub 2020 Dec 2. J Am Chem Soc. 2020. PMID: 33322910 Free PMC article.
-
DNA nanostructures: a shift from assembly to applications.Curr Opin Chem Eng. 2015 Feb 1;7:93-100. doi: 10.1016/j.coche.2015.01.001. Curr Opin Chem Eng. 2015. PMID: 25729640 Free PMC article.
-
Silver-Mediated Double Helix: Structural Parameters for a Robust DNA Building Block.ACS Omega. 2017 Oct 31;2(10):7343-7348. doi: 10.1021/acsomega.7b01089. Epub 2017 Oct 27. ACS Omega. 2017. PMID: 30023548 Free PMC article.
-
Hierarchy of Hybrid Materials-The Place of Inorganics-in-Organics in it, Their Composition and Applications.Front Chem. 2019 Apr 4;7:179. doi: 10.3389/fchem.2019.00179. eCollection 2019. Front Chem. 2019. PMID: 31019908 Free PMC article. Review.
References
-
- Seeman NC. J. Theor. Biol. 1982;99:237–247. - PubMed
-
- Chen J, Seeman NC. Nature. 1991;350:631–633. - PubMed
-
- Fu TJ, Seeman NC. Biochemistry. 1993;32:3211–3220. - PubMed
-
- Winfree E, Liu F, Wenzler LA, Seeman NC. Nature. 1998;394:539–544. - PubMed
-
- Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH. Science. 2003;301:1882–1884. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources