Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 18;136(24):8766-71.
doi: 10.1021/ja503593n. Epub 2014 Jun 5.

Enantioselective imidation of sulfides via enzyme-catalyzed intermolecular nitrogen-atom transfer

Affiliations

Enantioselective imidation of sulfides via enzyme-catalyzed intermolecular nitrogen-atom transfer

Christopher C Farwell et al. J Am Chem Soc. .

Abstract

Engineering enzymes with novel reaction modes promises to expand the applications of biocatalysis in chemical synthesis and will enhance our understanding of how enzymes acquire new functions. The insertion of nitrogen-containing functional groups into unactivated C-H bonds is not catalyzed by known enzymes but was recently demonstrated using engineered variants of cytochrome P450BM3 (CYP102A1) from Bacillus megaterium. Here, we extend this novel P450-catalyzed reaction to include intermolecular insertion of nitrogen into thioethers to form sulfimides. An examination of the reactivity of different P450BM3 variants toward a range of substrates demonstrates that electronic properties of the substrates are important in this novel enzyme-catalyzed reaction. Moreover, amino acid substitutions have a large effect on the rate and stereoselectivity of sulfimidation, demonstrating that the protein plays a key role in determining reactivity and selectivity. These results provide a stepping stone for engineering more complex nitrogen-atom-transfer reactions in P450 enzymes and developing a more comprehensive biocatalytic repertoire.

PubMed Disclaimer

Figures

Figure 1
Figure 1
(A) P450-catalyzed sulfoxidation, shown proceeding through compound I. This reaction can also be mediated by compound 0 (hydroperoxy intermediate). (B) Serine-ligated P411-catalyzed sulfimidation (this work), believed to proceed through a nitrenoid intermediate formed from an azide with N2 as a byproduct.
Figure 2
Figure 2
Plot of reaction rate versus Hammett parameter of substituted aryl sulfides using the P411BM3-CIS T438S enzyme and tosyl azide as nitrogen source. Data points are labeled with aryl substituent and position (p- = para, m- = meta) and Hammett parameters obtained form Hansch et al.
Figure 3
Figure 3
Proposed mechanisms of sulfimide (“productive”) and sulfonamide (“unproductive”) formation.

References

    1. Davies H. M. L.; Manning J. R. Nature 2008, 451, 417–424. - PMC - PubMed
    2. Paddon C. J.; Westfall P. J.; Pitera D. J.; Benjamin K.; Fisher K.; McPhee D.; Leavell M. D.; Tai A.; Main A.; Eng D.; Polichuk D. R.; Teoh K. H.; Reed D. W.; Treynor T.; Lenihan J.; Fleck M.; Bajad S.; Dang G.; Dengrove D.; Diola D.; Dorin G.; Ellens K. W.; Fickes S.; Galazzo J.; Gaucher S. P.; Geistlinger T.; Henry R.; Hepp M.; Horning T.; Iqbal T.; Jiang H.; Kizer L.; Lieu B.; Melis D.; Moss N.; Regentin R.; Secrest S.; Tsuruta H.; Vazquez R.; Westblade L. F.; Xu L.; Yu M.; Zhang Y.; Zhao L.; Lievense J.; Covello P. S.; Keasling J. D.; Reiling K. K.; Renninger N. S.; Newman J. D. Nature 2013, 496, 528–532. - PubMed
    1. Carreno M. C. Chem. Rev. 1995, 95, 1717–1760.
    2. Fernandez I.; Khiar N. Chem. Rev. 2003, 103, 3651–3706. - PubMed
    1. de Gonzalo G.; Pazmino D. E. T.; Ottolina G.; Fraaije M. W.; Carrea G. Tetrahedron: Asymmetry 2006, 17, 130–135.
    2. Feingersch R.; Shainsky J.; Wood T. K.; Fishman A. Appl. Environ. Microbiol. 2008, 74, 1555–1566. - PMC - PubMed
    3. Colonna S.; Gaggero N.; Pasta P.; Ottolina G. Chem. Commun. 1996, 2303–2307.
    4. Allenmark S. G.; Andersson M. A. Tetrahedron: Asymmetry 1996, 7, 1089–1094.
    5. Colonna S.; Gaggero N.; Manfredi A.; Casella L.; Gullotti M.; Carrea G.; Pasta P. Biochemistry 1990, 29, 10465–10468. - PubMed
    6. Colonna S.; Gaggero N.; Carrea G.; Pasta P. J. Chem. Soc., Chem. Comm. 1992, 357–358.
    7. Dai L. H.; Klibanov A. M. Biotechnol. Bioeng. 2000, 70, 353–357. - PubMed
    8. Fruetel J.; Chang Y. T.; Collins J.; Loew G.; Demontellano P. R. O. J. Am. Chem. Soc. 1994, 116, 11643–11648.
    1. Zhang J. D.; Li A. T.; Yang Y.; Xu J. H. Appl. Microbiol. Biotechnol. 2010, 85, 615–624. - PubMed
    2. Schallmey A.; den Besten G.; Teune I. G.; Kembaren R. F.; Janssen D. B. Appl. Microbiol. Biotechnol. 2011, 89, 1475–1485. - PMC - PubMed
    3. Pordea A.; Creus M.; Panek J.; Duboc C.; Mathis D.; Novic M.; Ward T. R. J. Am. Chem. Soc. 2008, 130, 8085–8088. - PubMed
    4. O’Reilly E.; Corbett M.; Hussain S.; Kelly P. P.; Richardson D.; Flitsch S. L.; Turner N. J. Catal. Sci. Technol. 2013, 3, 1490–1492.
    5. Nikodinovic-Runic J.; Coulombel L.; Francuski D.; Sharma N. D.; Boyd D. R.; Ferrall R. M.; O’Connor K. E. Appl. Microbiol. Biotechnol. 2013, 97, 4849–4858. - PubMed
    1. Bong Y. K.; Clay M.; Collier S.; Mijts B.; Vogel M.; Zhang X.; Zhu J.; Nazor J.; Smith D.; Song S. WO Patent 2,011,071,982, 2011.
    2. Ang E. L.; Clay M.; Behrouzian B.; Eberhard E.; Collier S.; Fu Fan J.; Smith D.; Song S.; Alvizar O.; Widegren M. WO Patent 2,012,078,800, 2012.
    3. Huisman G. W.; Collier S. J. Curr. Opin. Chem. Biol. 2013, 17, 284–292. - PubMed

Publication types

LinkOut - more resources