Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly
- PMID: 24902542
- PMCID: PMC4127366
- DOI: 10.1007/s00439-014-1458-9
Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly
Abstract
The role of the mitochondria in disease, general health and aging has drawn much attention over the years. Several attempts have been made to describe how the numbers of mitochondria correlate with age, although with inconclusive results. In this study, the relative quantity of mitochondrial DNA compared to nuclear DNA, i.e. the mitochondrial DNA copy number, was measured by PCR technology and used as a proxy for the content of mitochondria copies. In 1,067 Danish twins and singletons (18-93 years of age), with the majority being elderly individuals, the estimated mean mitochondrial DNA copy number in peripheral blood cells was similar for those 18-48 years of age [mean relative mtDNA content: 61.0; 95 % CI (52.1; 69.9)], but declined by -0.54 mtDNA 95 % CI (-0.63; -0.45) every year for those older than approximately 50 years of age. However, the longitudinal, yearly decline within an individual was more than twice as steep as observed in the cross-sectional analysis [decline of mtDNA content: -1.27; 95 % CI (-1.71; -0.82)]. Subjects with low mitochondrial DNA copy number had poorer outcomes in terms of cognitive performance, physical strength, self-rated health, and higher all-cause mortality than subjects with high mitochondrial DNA copy number, also when age was controlled for. The copy number mortality association can contribute to the smaller decline in a cross-sectional sample of the population compared to the individual, longitudinal decline. This study suggests that high mitochondrial DNA copy number in blood is associated with better health and survival among elderly.
Figures
References
-
- Bai RK, Perng CL, Hsu CH, Wong LJ. Quantitative PCR analysis of mitochondrial DNA content in patients with mitochondrial disease. Ann N Y Acad Sci. 2004;1011:304–309. - PubMed
-
- Barazzoni R, Short KR, Nair KS. Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart. J Biol Chem. 2000;275(5):3343–3347. - PubMed
-
- Benyamin B, Sorensen TI, Schousboe K, Fenger M, Visscher PM, Kyvik KO. Are there common genetic and environmental factors behind the endophenotypes associated with the metabolic syndrome? Diabetologia. 2007;50(9):1880–1888. - PubMed
-
- Christensen K, Frederiksen H, Vaupel JW, McGue M. Age trajectories of genetic variance in physical functioning: a longitudinal study of Danish twins aged 70 years and older. Behav Genet. 2003;33(2):125–136. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
