Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May 22:8:328.
doi: 10.3389/fnhum.2014.00328. eCollection 2014.

Mental representation and motor imagery training

Affiliations

Mental representation and motor imagery training

Thomas Schack et al. Front Hum Neurosci. .

Abstract

Research in sports, dance and rehabilitation has shown that basic action concepts (BACs) are fundamental building blocks of mental action representations. BACs are based on chunked body postures related to common functions for realizing action goals. In this paper, we outline issues in research methodology and an experimental method, the structural dimensional analysis of mental representation (SDA-M), to assess action-relevant representational structures that reflect the organization of BACs. The SDA-M reveals a strong relationship between cognitive representation and performance if complex actions are performed. We show how the SDA-M can improve motor imagery training and how it contributes to our understanding of coaching processes. The SDA-M capitalizes on the objective measurement of individual mental movement representations before training and the integration of these results into the motor imagery training. Such motor imagery training based on mental representations (MTMR) has been applied successfully in professional sports such as golf, volleyball, gymnastics, windsurfing, and recently in the rehabilitation of patients who have suffered a stroke.

Keywords: basic action concepts; mental imagery; mental representation; mental simulation; motor imagery.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Dendrograms for the experts (A) and non-players (B) based on the hierarchical cluster analysis of BACs in the tennis serve. The horizontally aligned numbers denote the BACs (for the code, see text), the vertical numbers, the euclidean distances. For every group, it holds n = 11; p = 0.05; dcrit = 3.46. A tennis serve consists of three distinct phases, each of which fulfills distinct functional and biomechanical demands. First, in the pre-activation phase, body and ball are brought into position, and tension energy is provided to prepare the strike. The following BACs were identified: (1) ball throw, (2) forward movement of the pelvis, (3) bending the knees, and (4) bending the elbow. Second, in the strike phase, energy is conveyed to the ball. The following BACs were identified: (5) frontal upper body rotation, (6) racket acceleration, (7) whole body stretch motion, and (8) hitting point. Third, in the final swing phase, the body is prevented from falling, and the racket movement is decelerated after the strike. The following BACs were identified: (9) wrist flap, (10) forward bending of the body, and (11) racket follow through.
Figure 2
Figure 2
Mean group dendrograms of the practice group (n = 12) for the golf putt at (A) pre-test and (B) retention-test. The numbers on the x-axis relate to the BAC number, the numbers on the y-axis display euclidean distances. The lower the link between related BACs, the lower is the euclidean distance. The horizontal dotted line marks dcrit for a given α-level (dcrit = 3.41; α = 0.05); links between BACs above this line are considered unrelated; horizontal gray lines below BAC numbers mark clusters. BACs: (1) shoulders parallel to target line, (2) align club face square to target line, (3) grip check, (4) look to the hole, (5) rotate shoulders away from the ball, (6) keep arms-shoulder triangle, (7) smooth transition, (8) rotate shoulders towards the ball, (9) accelerate club, (10) impact with the ball, (11) club face square to target line at impact, (12) follow-through, (13) rotate shoulders through the ball, (14) decelerate club, (15) direct clubhead to planned position, and (16) look to the outcome [Reprinted from Frank et al., , with permission].
Figure 3
Figure 3
Memory profile of the spike in player A’s (A) and player B’s (B) movement memory. BACs: (1) taking arms back, (2) stamp step, (3) bending knees and trunk, (4) swinging both arms forward, (5) extending legs, (6) body arching, (7) spiking arm back, (8) high elbow, (9) glance toward opponent’s block, (10) spike emphasizing the wrist, (11) whipping extension of arm, and (12) drawthrough of hitting arm. A scale indicating the distances of BAC representations in movement memory is located on the left side of the figure. The lower the value of a horizontal connection between two BACs, the lower the distance between them in movement memory (Printed from: Schack, ; p. 417 with permission).

References

    1. Beilock S. L., Wierenga S. A., Carr T. H. (2002). Expertise, attention and memory in sensorimotor skill execution: impact of novel task constraints on dual-task performance and episodic memory. Q. J. Exp. Psychol. A 55, 1211–1240 10.1080/02724980244000170 - DOI - PubMed
    1. Bernstein (Bernštejn) N. A. (1947). O postrojenii dviženij (On the structure of movements). Mozkva: Medgiz. English translation: Bernstein, N. A. (1967). The Co-Ordination and Regulation of Movements. University of Michigan: Pergamon Press
    1. Bläsing B., Puttke M., Schack T. (Eds.) (2010a). Neurocognition of Dance. London: Psychology Press
    1. Bläsing B., Schack T., Brugger P. (2010b). The functional architecture of the human body: assessing body representation by sorting body parts and activities. Exp. Brain Res. 203, 119–129 10.1007/s00221-010-2216-4 - DOI - PubMed
    1. Bläsing B., Tenenbaum G., Schack T. (2009). The cognitive structure of movements in classical dance. Psychol. Sport Exerc. 10, 350–360 10.1016/j.psychsport.2008.10.001 - DOI

LinkOut - more resources