Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 6;9(6):e98735.
doi: 10.1371/journal.pone.0098735. eCollection 2014.

Is a coded physical activity diary valid for assessing physical activity level and energy expenditure in stroke patients?

Affiliations

Is a coded physical activity diary valid for assessing physical activity level and energy expenditure in stroke patients?

Christel Vanroy et al. PLoS One. .

Abstract

Objectives: to determine the concurrent validity of a physical activity diary for measuring physical activity level and total energy expenditure in hospitalized stroke patients.

Method: Sixteen stroke patients kept coded activity diaries and wore SenseWear Pro2 multi-sensor activity monitors during daytime hours for one day. A researcher observed the patients and completed a diary. Data from the patients' diaries were compared with observed and measured data to determine total activity (METs*minutes), activity level and total energy expenditure.

Results: Spearman correlations between the patients' and researchers' diaries revealed a high correlation for total METs*minutes (rs = 0.75, p<0.01) for sedentary (rs = 0.74,p<0.01) and moderate activities (rs = 0.71,p<0.01) and a very high correlation (rs = 0.92, p<0.01) for the total energy expenditure. Comparisons between the patients' diaries and activity monitor data revealed a low correlation (rs 0.29) for total METs*minutes and energy expenditure.

Conclusion: Coded self-monitoring activity diaries appear feasible as a low-tech alternative to labor-intensive observational diaries for determining sedentary, moderate, and total physical activity and for quantifying energy expenditure in hospitalized stroke patients. Given the poor correlation with objective measurements of physical activity, however, further research is needed to validate its use against a gold-standard measure of physical activity intensity and energy expenditure.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Comparing total Mets*minutes in 16 stroke patients: observational diary versus patient diary.
Total Mets*minutes of observer activity diary was compared with diary of stroke patients. Broken horizontal lines represent percentiles 25 and 75, bold solid lines represent the median value of difference. Data analysis showed a good level of agreement between both diaries, data points clustering around zero (Median = 85.50; P25 = 3.00; P75 = 141.75). An underestimation of total METs*minutes for all patients is noted in comparison with the patient's diary. Visual inspection revealed no systematic bias.
Figure 2
Figure 2. Comparing total Mets*minutes in 16 stroke patients: activity monitor versus patient diary.
Total Mets*minutes of activity monitor was compared with diary of stroke patients. Broken horizontal lines represent percentiles 25 and 75, bold solid lines represent the median value of difference. Data analysis showed no good level of agreement between patient diary and the activity monitor (Median = 352.24; P25 = 242.44; P75 = 601.46). Visual inspection revealed no systematic bias.
Figure 3
Figure 3. Comparing energy expenditure in 16 stroke patients: observational diary versus patient diary.
Energy expenditure (kcal/12 h) of observer activity diary was compared with diary of stroke patients. Broken horizontal lines represent percentiles 25 and 75 value, bold solid lines represent the median value of difference. Data analysis showed good agreement between both diaries (Median = 91.90; P25 = 2.57; P75 = 194.51). Most data are clustered around the zero point.
Figure 4
Figure 4. Comparing energy expenditure in 16 stroke patients: activity monitor versus patient diary.
Energy expenditure (kcal/12 h) of observer activity diary was compared with diary of stroke patients. Broken horizontal lines represent percentiles 25 and 75 value, bold solid lines represent the median value of difference. The activity monitor is underestimating data for all patients in comparison to the diary filled in by the patient (Median = 507.27; P25 = 301.05; P75 = 804.44).

Similar articles

Cited by

References

    1. Hamilton MT, Hamilton DG, Zderic TW (2007) Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 56: 2655–2667. - PubMed
    1. Wendel-Vos GC, Schuit AJ, Feskens EJ, Boshuizen HC, Verschuren WM, et al. (2004) Physical activity and stroke. A meta-analysis of observational data. Int J Epidemiol 33: 787–798. - PubMed
    1. De Wit L, Putman K, Dejaeger E, Baert I, Berman P, et al. (2005) Use of time by stroke patients: a comparison of four European rehabilitation centers. Stroke 36: 1977–1983. - PubMed
    1. Alzahrani MA, Ada L, Dean CM (2011) Duration of physical activity is normal but frequency is reduced after stroke: an observational study. Journal of physiotherapy 57: 47–51. - PubMed
    1. Green LB (2007) Assessment of habitual physical activity and paretic arm mobility among stroke survivors by accelerometry. Top Stroke Rehabil 14: 9–21. - PubMed

Publication types