The genetic diversity of cereulide biosynthesis gene cluster indicates a composite transposon Tnces in emetic Bacillus weihenstephanensis
- PMID: 24906385
- PMCID: PMC4057527
- DOI: 10.1186/1471-2180-14-149
The genetic diversity of cereulide biosynthesis gene cluster indicates a composite transposon Tnces in emetic Bacillus weihenstephanensis
Abstract
Background: Cereulide is a cyclic dodecadepsipeptide ionophore, produced via non-ribosomal peptide synthetases (NRPS), which in rare cases can lead to human death. Early studies had shown that emetic toxin formation belongs to a homogeneous group of Bacillus cereus sensu stricto and the genetic determinants of cereulide (a 24-kb gene cluster of cesHPTABCD) are located on a 270-kb plasmid related to the Bacillus anthracis virulence plasmid pXO1.
Results: The whole genome sequences from seven emetic isolates, including two B. cereus sensu stricto and five Bacillus weihenstephanensis strains, were compared, and their inside and adjacent DNA sequences of the cereulide biosynthesis gene clusters were analyzed. The sequence diversity was observed, which classified the seven emetic isolates into three clades. Different genomic locations of the cereulide biosynthesis gene clusters, plasmid-borne and chromosome-borne, were also found. Potential mobile genetic elements (MGEs) were identified in the flanking sequences of the ces gene cluster in all three types. The most striking observation was the identification of a putative composite transposon, Tnces, consisting of two copies of ISces element (belonging to IS6 family) in opposite orientations flanking the ces gene cluster in emetic B. weihenstephanensis. The mobility of this element was tested by replacing the ces gene cluster by a KmR gene marker and performing mating-out transposition assays in Escherichia coli. The results showed that Tnces::km transposes efficiently (1.04 × 10(-3) T/R) and produces 8-bp direct repeat (DR) at the insertion sites.
Conclusions: Cereulide biosynthesis gene clusters display sequence diversity, different genomic locations and association with MGEs, in which the transposition capacity of a resistant derivative of the composite transposon Tnces in E. coli was demonstrated. Further study is needed to look for appropriate genetic tools to analysis the transposition of Tnces in Bacillus spp. and the dynamics of other MGEs flanking the ces gene clusters.
Figures





Similar articles
-
Food-bacteria interplay: pathometabolism of emetic Bacillus cereus.Front Microbiol. 2015 Jul 14;6:704. doi: 10.3389/fmicb.2015.00704. eCollection 2015. Front Microbiol. 2015. PMID: 26236290 Free PMC article. Review.
-
Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1.BMC Microbiol. 2006 Mar 2;6:20. doi: 10.1186/1471-2180-6-20. BMC Microbiol. 2006. PMID: 16512902 Free PMC article.
-
Cereulide Synthetase Acquisition and Loss Events within the Evolutionary History of Group III Bacillus cereus Sensu Lato Facilitate the Transition between Emetic and Diarrheal Foodborne Pathogens.mBio. 2020 Aug 25;11(4):e01263-20. doi: 10.1128/mBio.01263-20. mBio. 2020. PMID: 32843545 Free PMC article.
-
Complete sequence analysis of novel plasmids from emetic and periodontal Bacillus cereus isolates reveals a common evolutionary history among the B. cereus-group plasmids, including Bacillus anthracis pXO1.J Bacteriol. 2007 Jan;189(1):52-64. doi: 10.1128/JB.01313-06. Epub 2006 Oct 13. J Bacteriol. 2007. PMID: 17041058 Free PMC article.
-
Why be serious about emetic Bacillus cereus: Cereulide production and industrial challenges.Food Microbiol. 2020 Feb;85:103279. doi: 10.1016/j.fm.2019.103279. Epub 2019 Jul 26. Food Microbiol. 2020. PMID: 31500702 Review.
Cited by
-
Genetic interrelations in the actinomycin biosynthetic gene clusters of Streptomyces antibioticus IMRU 3720 and Streptomyces chrysomallus ATCC11523, producers of actinomycin X and actinomycin C.Adv Appl Bioinform Chem. 2017 Apr 7;10:29-46. doi: 10.2147/AABC.S117707. eCollection 2017. Adv Appl Bioinform Chem. 2017. PMID: 28435299 Free PMC article.
-
Food-bacteria interplay: pathometabolism of emetic Bacillus cereus.Front Microbiol. 2015 Jul 14;6:704. doi: 10.3389/fmicb.2015.00704. eCollection 2015. Front Microbiol. 2015. PMID: 26236290 Free PMC article. Review.
-
Diversity of Bacillus cereus sensu lato mobilome.BMC Genomics. 2019 May 29;20(1):436. doi: 10.1186/s12864-019-5764-4. BMC Genomics. 2019. PMID: 31142281 Free PMC article.
-
Identification and genomic comparison of temperate bacteriophages derived from emetic Bacillus cereus.PLoS One. 2017 Sep 8;12(9):e0184572. doi: 10.1371/journal.pone.0184572. eCollection 2017. PLoS One. 2017. PMID: 28886124 Free PMC article.
-
Genetic and Phenotypic Characterization of Bacillus velezensis Strain BV379 for Human Probiotic Applications.Microorganisms. 2024 Feb 21;12(3):436. doi: 10.3390/microorganisms12030436. Microorganisms. 2024. PMID: 38543487 Free PMC article.
References
-
- Guinebretière M-H, Auger S, Galleron N, Contzen M, De Sarrau B, De Buyser M-L, Lamberet G, Fagerlund A, Granum PE, Lereclus D. Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning. Int J Syst Evol Microbiol. 2013;63(Pt 1):31–40. doi: 10.1099/ijs.0.030627-0. - DOI - PubMed
-
- Okinaka RT, Cloud K, Hampton O, Hoffmaster AR, Hill KK, Keim P, Koehler TM, Lamke G, Kumano S, Mahillon J, Manter D, Martinez Y, Ricke D, Svensson R, Jackson PJ. Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J Bacteriol. 1999;181(20):6509–6515. - PMC - PubMed
-
- Baum JA, Chu CR, Rupar M, Brown GR, Donovan WP, Huesing JE, Ilagan O, Malvar TM, Pleau M, Walters M, Vaughn T. Binary toxins from Bacillus thuringiensis active against the western corn rootworm, Diabrotica virgifera virgifera LeConte. Appl Environ Microbiol. 2004;70(8):4889–4898. doi: 10.1128/AEM.70.8.4889-4898.2004. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous