Modeling Variability in Individual Development: Differences of degree or kind?
- PMID: 24910711
- PMCID: PMC4045646
- DOI: 10.1111/j.1750-8606.2010.00129.x
Modeling Variability in Individual Development: Differences of degree or kind?
Abstract
The proper use of statistical models for analyzing individual change over time is critical for the progress of developmental science. Latent curve models, hierarchical linear growth models, group-based trajectory models, and growth mixture models constitute increasingly important tools for longitudinal data analysis. To facilitate their understanding and use, this paper clarifies similarities and differences between these models, with particular attention to the assumptions they make about individual development. An example shows how the results and interpretation vary across model types. Discussion centers on reviewing the strengths and limitations of each approach for developmental research.
Figures




Similar articles
-
Understanding Variation in Longitudinal Data Using Latent Growth Mixture Modeling.J Pediatr Psychol. 2021 Feb 19;46(2):179-188. doi: 10.1093/jpepsy/jsab010. J Pediatr Psychol. 2021. PMID: 33609037
-
Identification of developmental trajectory classes: Comparing three latent class methods using simulated and real data.Adv Life Course Res. 2019 Dec;42:100288. doi: 10.1016/j.alcr.2019.04.018. Epub 2019 Apr 27. Adv Life Course Res. 2019. PMID: 36732968
-
An introduction to latent growth models: analysis of repeated measures physical performance data.Res Q Exerc Sport. 2005 Jun;76(2):176-92. doi: 10.1080/02701367.2005.10599279. Res Q Exerc Sport. 2005. PMID: 16128485
-
Causal evidence in health decision making: methodological approaches of causal inference and health decision science.Ger Med Sci. 2022 Dec 21;20:Doc12. doi: 10.3205/000314. eCollection 2022. Ger Med Sci. 2022. PMID: 36742460 Free PMC article. Review.
-
[Multilevel model applications to the analysis of longitudinal data].Rev Esp Salud Publica. 2004 Mar-Apr;78(2):177-88. doi: 10.1590/s1135-57272004000200005. Rev Esp Salud Publica. 2004. PMID: 15199796 Review. Spanish.
Cited by
-
Neurodevelopmental profiles of preschool-age children in Flint, Michigan: a latent profile analysis.J Neurodev Disord. 2021 Aug 19;13(1):29. doi: 10.1186/s11689-021-09377-y. J Neurodev Disord. 2021. PMID: 34412591 Free PMC article.
-
Longitudinal modeling in developmental neuroimaging research: Common challenges, and solutions from developmental psychology.Dev Cogn Neurosci. 2018 Oct;33:54-72. doi: 10.1016/j.dcn.2017.11.009. Epub 2017 Nov 22. Dev Cogn Neurosci. 2018. PMID: 29395939 Free PMC article. Review.
-
Change over Time: Conducting Longitudinal Studies of Children's Cognitive Development.J Cogn Dev. 2013 Oct 1;14(4):515-528. doi: 10.1080/15248372.2013.833925. J Cogn Dev. 2013. PMID: 24955035 Free PMC article.
-
Applying group-based trajectory modeling to understand under-five mortality trends and determinants in low-and lower-middle income countries.Popul Health Metr. 2025 May 28;23(1):20. doi: 10.1186/s12963-025-00381-1. Popul Health Metr. 2025. PMID: 40426192 Free PMC article.
-
Codevelopment of Delinquency, Alcohol Use, and Aggression Toward Peers and Dates: Multitrajectory Patterns and Predictors.J Res Adolesc. 2020 Dec;30(4):1025-1038. doi: 10.1111/jora.12577. Epub 2020 Sep 12. J Res Adolesc. 2020. PMID: 32918776 Free PMC article.
References
-
- Bauer DJ. Observations on the use of growth mixture models in psychological research. Multivariate Behavioral Research. 2007;42:757–786.
-
- Bauer DJ, Curran PJ. Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes. Psychological Methods. 2003a;8(3):338–363. - PubMed
-
- Bauer DJ, Curran PJ. Overextraction of latent trajectory classes: Much ado about nothing? Reply to Rindskopf (2003), Muthen (2003), and Cudeck and Henly (2003). Psychological Methods. 2003b;8(3):384–393. - PubMed
-
- Bollen KA, Curran PJ. Latent Curve Models: A Structural Equation Perspective. Wiley; Hoboken, N.J.: 2006.
-
- Bryk AS, Raudenbush SW. Application of hierarchical linear models to assessing change. Psychological Bulletin. 1987;101:147–158.
Grants and funding
LinkOut - more resources
Full Text Sources