Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015;55(8):1081-97.
doi: 10.1080/10408398.2012.684551.

Effect of acid hydrolysis on starch structure and functionality: a review

Affiliations
Review

Effect of acid hydrolysis on starch structure and functionality: a review

Shujun Wang et al. Crit Rev Food Sci Nutr. 2015.

Abstract

Acid hydrolysis is an important chemical modification that can significantly change the structural and functional properties of starch without disrupting its granular morphology. A deep understanding of the effect of acid hydrolysis on starch structure and functionality is of great importance for starch scientific research and its industrial applications. During acid hydrolysis, amorphous regions are hydrolyzed preferentially, which enhances the crystallinity and double helical content of acid hydrolyzed starch. This review discusses current understanding of the effect of acid hydrolysis on starch structure and functionality. The effects of acid hydrolysis on amylose content, chain length distribution of amylopectin molecules, molecular and crystalline organization (including lamellar structure) and granular morphology are considered. Functional properties discussed include swelling power, gelatinization, retrogradation, pasting, gel texture, and in vitro enzyme digestibility. The paper also highlights some promising applications of acid hydrolyzed starch (starch nanocrystals) in the preparation of biodegradable nanocomposites, bio-hydrogen, and slowly digestible starch-based healthy foods.

Keywords: Starch; acid hydrolysis (lintnerization); amylopectin; amylose; application; in vitro digestibility.

PubMed Disclaimer

Publication types

LinkOut - more resources