Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 10;9(6):e99411.
doi: 10.1371/journal.pone.0099411. eCollection 2014.

The intestinal archaea Methanosphaera stadtmanae and Methanobrevibacter smithii activate human dendritic cells

Affiliations

The intestinal archaea Methanosphaera stadtmanae and Methanobrevibacter smithii activate human dendritic cells

Corinna Bang et al. PLoS One. .

Abstract

The methanoarchaea Methanosphaera stadtmanae and Methanobrevibacter smithii are known to be part of the indigenous human gut microbiota. Although the immunomodulatory effects of bacterial gut commensals have been studied extensively in the last decade, the impact of methanoarchaea in human's health and disease was rarely examined. Consequently, we studied and report here on the effects of M. stadtmanae and M. smithii on human immune cells. Whereas exposure to M. stadtmanae leads to substantial release of proinflammatory cytokines in monocyte-derived dendritic cells (moDCs), only weak activation was detected after incubation with M. smithii. Phagocytosis of M. stadtmanae by moDCs was demonstrated by confocal microscopy as well as transmission electronic microscopy (TEM) and shown to be crucial for cellular activation by using specific inhibitors. Both strains, albeit to different extents, initiate a maturation program in moDCs as revealed by up-regulation of the cell-surface receptors CD86 and CD197 suggesting additional activation of adaptive immune responses. Furthermore, M. stadtmanae and M. smithii were capable to alter the gene expression of antimicrobial peptides in moDCs to different extents. Taken together, our findings strongly argue that the archaeal gut inhabitants M. stadtmanae and M. smithii are specifically recognized by the human innate immune system. Moreover, both strains are capable of inducing an inflammatory cytokine response to different extents arguing that they might have diverse immunomodulatory functions. In conclusion, we propose that the impact of intestinal methanoarchaea on pathological conditions involving the gut microbiota has been underestimated until now.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. M. stadtmanae induces significant higher release of cytokines in moDCs than M. smithii.
Cytokine release after stimulation of 2×105 moDCs with 1×106 and 1×107 M. stadtmanae or M. smithii cells for 20 h was quantified using commercial ELISA-Kits (AC). MoDCs were preincubated with 2 µM Cytochalasin D in DMSO (B) or 10 nM Bafilomycin A1 in DMSO (C) for 30 min prior stimulation. LPS (100 ng/ml) and medium were used as controls. Stated data are means of at least 3 independent biological replicates with their respective standard errors of the mean (SEM).
Figure 2
Figure 2. Phagocytosis of M. stadtmanae is crucial for immune cell activation.
A) After preincubation with 1 µM Cytochalasin D (in DMSO) and with DMSO alone (control) for 30 min 1×105 moDCs were stimulated with 1×107 methanoarchaeal cells in glass cover slips for a period of 4 h. Lysosomes in moDCs were stained with LysoTracker Red DND-99 during time of incubation. After incubation, moDCs were washed, fixed with 3% paraformaldehyde and labeled with Hoechst (DAPI-staining). Images were captured using LSM 510 confocal microscopy (Zeiss) with Leica confocal software and are representative of the respective samples. B) 1×106 moDCs were stimulated with 1×108 methanoarchaeal cells for a period of 4 h. After washing in PBS, moDCs were fixed for electron microscopy. Images are representative for the respective sample.
Figure 3
Figure 3. Increased expressions of cell-surface receptors on moDCs after stimulation with M. stadtmanae and M. smithii.
1×106 moDCs were stimulated with 1×107 M. stadtmanae or M. smithii cells or medium for 24 h and 48 h at 37°C. Subsequently, 2×105 moDCs were incubated with antibodies (PE- or FITC-labeled) and analyzed with a FACS flow cytometer. MoDCs were selected by forward and side scattered signals before measuring the intensity of PE or FITC fluorescence signals of 10000 cells. Depicted graphics are original plots of FlowJo Software, Version 7.5.5.
Figure 4
Figure 4. Altered gene expression of AMPs in moDCs after stimulation with M. stadtmanae and M. smithii.
2–4×106 moDCs were stimulated with 1×107 M. stadtmanae or M. smithii cells and medium (for control) over a period of 24 h. Subsequently, RNA was isolated according to manufacturer's protocol and reverse-transcribed. Relative quantification of expression of genes encoding HBD1 and LL37 were calculated with the LightCycler 480 Software in relation to house-keeping gene hprt.

References

    1. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America 87: 4576–4579. - PMC - PubMed
    1. DeLong EF, Pace NR (2001) Environmental diversity of bacteria and archaea. Systematic Biology 50: 470–478. - PubMed
    1. Barns SM, Delwiche CF, Palmer JD, Pace NR (1996) Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proceedings of the National Academy of Sciences of the United States of America 93: 9188–9193. - PMC - PubMed
    1. Chaban B, Ng SY, Jarrell KF (2006) Archaeal habitats–from the extreme to the ordinary. Canadian Journal of Microbiology 52: 73–116. - PubMed
    1. Conway de Macario E, Macario AJL (2009) Methanogenic archaea in health and disease: a novel paradigm of microbial pathogenesis. International Journal of Medical Microbiology 299: 99–108. - PubMed

Publication types

MeSH terms

LinkOut - more resources