Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014:210:79-101.
doi: 10.1016/B978-0-444-63356-9.00004-2.

Distribution of neural plasticity in cerebellum-dependent motor learning

Affiliations

Distribution of neural plasticity in cerebellum-dependent motor learning

Michael Longley et al. Prog Brain Res. 2014.

Abstract

The cerebellum is essential for some forms of motor learning. Two examples that provide useful experimental models are modification of the vestibulo-ocular reflex and classical conditioning of the nictitating membrane response (NMR) in the rabbit. There has been considerable analysis of these behavioral models and of conditioning of the eyelid blink reflex, which is similar in several respects to NMR conditioning but with some key differences in its control circuitry. The evidence is consistent with the suggestion that storage of these motor memories is to be found within the cerebellum and its associated brainstem circuitry. The cerebellum presents many advantages as a model system to characterize the cellular and molecular mechanisms underpinning behavioral learning. And yet, localizing the essential synaptic changes has proven to be difficult. A major problem has been to establish to what extent these neural changes are distributed through the cerebellar cortex, cerebellar nuclei, and associated brainstem nuclei. Inspired by recent theoretical work, here we review evidence that the distribution of plasticity across cortical and cerebellar nuclear (or brainstem vestibular system) levels for different learning tasks may be different and distinct. Our primary focus is on classical conditioning of the NMR and eyelid blink, and we offer comparisons with mechanisms for modifications of the vestibulo-ocular reflex. We describe a view of cerebellar learning that satisfies theoretical and empirical analysis.

Keywords: cerebellar cortical learning; cerebellar nuclear learning; classical conditioning; eyeblink conditioning; learning; memory; memory consolidation.

PubMed Disclaimer

Publication types

LinkOut - more resources