MC1R variants increased the risk of sporadic cutaneous melanoma in darker-pigmented Caucasians: a pooled-analysis from the M-SKIP project
- PMID: 24917043
- PMCID: PMC4378685
- DOI: 10.1002/ijc.29018
MC1R variants increased the risk of sporadic cutaneous melanoma in darker-pigmented Caucasians: a pooled-analysis from the M-SKIP project
Abstract
The MC1R gene is a key regulator of skin pigmentation. We aimed to evaluate the association between MC1R variants and the risk of sporadic cutaneous melanoma (CM) within the M-SKIP project, an international pooled-analysis on MC1R, skin cancer and phenotypic characteristics. Data included 5,160 cases and 12,119 controls from 17 studies. We calculated a summary odds ratio (SOR) for the association of each of the nine most studied MC1R variants and of variants combined with CM by using random-effects models. Stratified analysis by phenotypic characteristics were also performed. Melanoma risk increased with presence of any of the main MC1R variants: the SOR for each variant ranged from 1.47 (95%CI: 1.17-1.84) for V60L to 2.74 (1.53-4.89) for D84E. Carriers of any MC1R variant had a 66% higher risk of developing melanoma compared with wild-type subjects (SOR; 95%CI: 1.66; 1.41-1.96) and the risk attributable to MC1R variants was 28%. When taking into account phenotypic characteristics, we found that MC1R-associated melanoma risk increased only for darker-pigmented Caucasians: SOR (95%CI) was 3.14 (2.06-4.80) for subjects with no freckles, no red hair and skin Type III/IV. Our study documents the important role of all the main MC1R variants in sporadic CM and suggests that they have a direct effect on melanoma risk, independently on the phenotypic characteristics of carriers. This is of particular importance for assessing preventive strategies, which may be directed to darker-pigmented Caucasians with MC1R variants as well as to lightly pigmented, fair-skinned subjects.
Keywords: genetic epidemiology; melanocortin-1 receptor; melanoma; meta-analysis.
© 2014 UICC.
Conflict of interest statement
Figures










References
-
- Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. GLOBOCAN 2008 v2.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10. Lyon, France: International Agency for Research on Cancer; 2010. http://globocan.iarc.fr.
-
- Thompson JF, Scolyer RA, Kefford RF. Cutaneous melanoma. Lancet. 2005;365:687–701. - PubMed
-
- Gandini S, Sera F, Cattaruzza MS, Pasquini P, Zanetti R, Masini C, Boyle P, Melchi CF. Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur J Cancer. 2005;41:2040–2059. - PubMed
-
- Gandini S, Sera F, Cattaruzza MS, Pasquini P, Picconi O, Boyle P, Melchi CF. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer. 2005;41:45–60. - PubMed
-
- Gandini S, Sera F, Cattaruzza MS, Pasquini P, Abeni D, Boyle P, Melchi CF. Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur J Cancer. 2005;41:28–44. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases