Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2014 Aug 12;130(7):565-72.
doi: 10.1161/CIRCULATIONAHA.114.009158. Epub 2014 Jun 11.

Epigenome-wide association study of fasting blood lipids in the Genetics of Lipid-lowering Drugs and Diet Network study

Affiliations
Multicenter Study

Epigenome-wide association study of fasting blood lipids in the Genetics of Lipid-lowering Drugs and Diet Network study

Marguerite R Irvin et al. Circulation. .

Abstract

Background: Genetic research regarding blood lipids has largely focused on DNA sequence variation; few studies have explored epigenetic effects. Genome-wide surveys of DNA methylation may uncover epigenetic factors influencing lipid metabolism.

Methods and results: To identify whether differential methylation of cytosine-(phosphate)-guanine dinucleotides (CpGs) correlated with lipid phenotypes, we isolated DNA from CD4+ T cells and quantified the proportion of sample methylation at >450 000 CpGs by using the Illumina Infinium HumanMethylation450 Beadchip in 991 participants of the Genetics of Lipid Lowering Drugs and Diet Network. We modeled the percentage of methylation at individual CpGs as a function of fasting very-low-density lipoprotein cholesterol and triglycerides (TGs) by using mixed linear regression adjusted for age, sex, study site, cell purity, and family structure. Four CpGs (cg00574958, cg17058475, cg01082498, and cg09737197) in intron 1 of carnitine palmitoyltransferase 1A (CPT1A) were strongly associated with very-low low-density lipoprotein cholesterol (P=1.8×10(-21) to 1.6×10(-8)) and TG (P=1.6×10(-26) to 1.5×10(-9)). Array findings were validated by bisulfite sequencing. We performed quantitative polymerase chain reaction experiments demonstrating that methylation of the top CpG (cg00574958) was correlated with CPT1A expression. The association of cg00574958 with TG and CPT1A expression were replicated in the Framingham Heart Study (P=4.1×10(-14) and 3.1×10(-13), respectively). DNA methylation at CPT1A cg00574958 explained 11.6% and 5.5% of the variation in TG in the discovery and replication cohorts, respectively.

Conclusions: This genome-wide epigenomic study identified CPT1A methylation as strongly and robustly associated with fasting very-low low-density lipoprotein cholesterol and TG. Identifying novel epigenetic contributions to lipid traits may inform future efforts to identify new treatment targets and biomarkers of disease risk.

Keywords: cholesterol; fatty acids; genetics, medical; lipids; lipoproteins.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: None.

Figures

Figure 1
Figure 1
Epigenome-wide association Manhattan plot for TG in the discovery dataset (N=995).
Figure 2
Figure 2
Epigenome-wide association Manhattan plot for VLDL-C in the discovery dataset (N=991).
Figure 3
Figure 3
ENCODE annotation of the promoter region and intron 1 of CPT1A. Top CpGs for TG are positioned within the gene along with CpG islands, cell line chromatin state (ChromHMM), cell line methylation at CpG sites on the Methyl450 Beadchip according to Hudson Alpha Institute for Biotechnology (HAIB; note blue, purple and orange highlights correspond to low, medium and high methylation state, respectively) and HMR conserved transcription factor binding sites.

Similar articles

Cited by

References

    1. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, Ganna A, Chen J, Buchkovich ML, Mora S, Beckmann JS, Bragg-Gresham JL, Chang HY, Demirkan A, Den Hertog HM, Do R, Donnelly LA, Ehret GB, Esko T, Feitosa MF, Ferreira T, Fischer K, Fontanillas P, Fraser RM, Freitag DF, Gurdasani D, Heikkilä K, Hyppönen E, Isaacs A, Jackson AU, Johansson A, Johnson T, Kaakinen M, Kettunen J, Kleber ME, Li X, Luan J, Lyytikäinen LP, Magnusson PK, Mangino M, Mihailov E, Montasser ME, Müller-Nurasyid M, Nolte IM, O'Connell JR, Palmer CD, Perola M, Petersen AK, Sanna S, Saxena R, Service SK, Shah S, Shungin D, Sidore C, Song C, Strawbridge RJ, Surakka I, Tanaka T, Teslovich TM, Thorleifsson G, Van den Herik EG, Voight BF, Volcik KA, Waite LL, Wong A, Wu Y, Zhang W, Absher D, Asiki G, Barroso I, Been LF, Bolton JL, Bonnycastle LL, Brambilla P, Burnett MS, Cesana G, Dimitriou M, Doney AS, Döring A, Elliott P, Epstein SE, Eyjolfsson GI, Gigante B, Goodarzi MO, Grallert H, Gravito ML, Groves CJ, Hallmans G, Hartikainen AL, Hayward C, Hernandez D, Hicks AA, Holm H, Hung YJ, Illig T, Jones MR, Kaleebu P, Kastelein JJ, Khaw KT, Kim E, Klopp N, Komulainen P, Kumari M, Langenberg C, Lehtimäki T, Lin SY, Lindström J, Loos RJ, Mach F, McArdle WL, Meisinger C, Mitchell BD, Müller G, Nagaraja R, Narisu N, Nieminen TV, Nsubuga RN, Olafsson I, Ong KK, Palotie A, Papamarkou T, Pomilla C, Pouta A, Rader DJ, Reilly MP, Ridker PM, Rivadeneira F, Rudan I, Ruokonen A, Samani N, Scharnagl H, Seeley J, Silander K, Stancáková A, Stirrups K, Swift AJ, Tiret L, Uitterlinden AG, van Pelt LJ, Vedantam S, Wainwright N, Wijmenga C, Wild SH, Willemsen G, Wilsgaard T, Wilson JF, Young EH, Zhao JH, Adair LS, Arveiler D, Assimes TL, Bandinelli S, Bennett F, Bochud M, Boehm BO, Boomsma DI, Borecki IB, Bornstein SR, Bovet P, Burnier M, Campbell H, Chakravarti A, Chambers JC, Chen YD, Collins FS, Cooper RS, Danesh J, Dedoussis G, de Faire U, Feranil AB, Ferrières J, Ferrucci L, Freimer NB, Gieger C, Groop LC, Gudnason V, Gyllensten U, Hamsten A, Harris TB, Hingorani A, Hirschhorn JN, Hofman A, Hovingh GK, Hsiung CA, Humphries SE, Hunt SC, Hveem K, Iribarren C, Järvelin MR, Jula A, Kähönen M, Kaprio J, Kesäniemi A, Kivimaki M, Kooner JS, Koudstaal PJ, Krauss RM, Kuh D, Kuusisto J, Kyvik KO, Laakso M, Lakka TA, Lind L, Lindgren CM, Martin NG, März W, McCarthy MI, McKenzie CA, Meneton P, Metspalu A, Moilanen L, Morris AD, Munroe PB, Njølstad I, Pedersen NL, Power C, Pramstaller PP, Price JF, Psaty BM, Quertermous T, Rauramaa R, Saleheen D, Salomaa V, Sanghera DK, Saramies J, Schwarz PE, Sheu WH, Shuldiner AR, Siegbahn A, Spector TD, Stefansson K, Strachan DP, Tayo BO, Tremoli E, Tuomilehto J, Uusitupa M, van Duijn CM, Vollenweider P, Wallentin L, Wareham NJ, Whitfield JB, Wolffenbuttel BH, Ordovas JM, Boerwinkle E, Palmer CN, Thorsteinsdottir U, Chasman DI, Rotter JI, Franks PW, Ripatti S, Cupples LA, Sandhu MS, Rich SS, Boehnke M, Deloukas P, Kathiresan S, Mohlke KL, Ingelsson E, Abecasis GR, Consortium GLG Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–1283. - PMC - PubMed
    1. Zaina S, Lund G. Epigenetics: a tool to understand diet-related cardiovascular risk? J Nutrigenet Nutrigenomics. 2011;4:261–274. - PubMed
    1. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454:766–770. - PMC - PubMed
    1. Irvin MR, Kabagambe EK, Tiwari HK, Parnell LD, Straka RJ, Tsai M, Ordovas JM, Arnett DK. Apolipoprotein E polymorphisms and postprandial triglyceridemia before and after fenofibrate treatment in the Genetics of Lipid Lowering and Diet Network (GOLDN) Study. Circ Cardiovasc Genet. 2010;3:462–467. - PMC - PubMed
    1. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, Esteller M. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics. 2011;6:692–702. - PubMed

Publication types