Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Jan;21(1):23-30.
doi: 10.1093/molehr/gau042. Epub 2014 Jun 12.

Developmental programming of obesity and insulin resistance: does mitochondrial dysfunction in oocytes play a role?

Affiliations
Review

Developmental programming of obesity and insulin resistance: does mitochondrial dysfunction in oocytes play a role?

Nigel Turner et al. Mol Hum Reprod. 2015 Jan.

Abstract

Insulin resistance is a key defect associated with obesity, type 2 diabetes and other metabolic diseases. While a number of factors have been suggested to cause defects in insulin action, there is a very strong association between inappropriate lipid deposition in insulin target tissues and the development of insulin resistance. In recent times, a large number of studies have reported changes in markers of mitochondrial metabolism in insulin-resistant individuals, leading to the theory that defects in mitochondrial substrate oxidation are responsible for the buildup of lipid intermediates and the development of insulin resistance. The primary support for the mitochondrial theory of insulin resistance comes from studies in skeletal muscle; however, there is recent evidence in murine models that mitochondrial dysfunction in oocytes may also play a role. Oocytes from obese or insulin-resistant mice have been shown to exhibit abnormalities in many different mitochondrial parameters, including mitochondrial morphology and membrane potential. Here we review the findings regarding the link between mitochondrial dysfunction and insulin resistance, and propose that abnormalities in mitochondrial metabolism in oocytes may predispose to the development of obesity and insulin resistance and thus contribute to the inter-generational programming of metabolic disease.

Keywords: insulin resistance; mitochondria; obesity; oocyte.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances