Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Sep 7;43(17):6439-69.
doi: 10.1039/c4cs00110a.

Yellow/orange emissive heavy-metal complexes as phosphors in monochromatic and white organic light-emitting devices

Affiliations

Yellow/orange emissive heavy-metal complexes as phosphors in monochromatic and white organic light-emitting devices

Cong Fan et al. Chem Soc Rev. .

Abstract

Owing to the electron spin-orbit coupling (SOC) and fast intersystem crossing (ISC), heavy-metal complexes (such as iridium(III), platinum(II) and osmium(II) complexes, etc.) are phosphorescent emitters at room temperature. Since 1998, heavy-metal complexes as phosphors have received considerable academic and industrial attention in the field of organic light-emitting diodes (OLEDs), because they can harvest both the singlet (25%) and triplet (75%) excitons for emission during the electro-generated processes. Among all the visible colors (blue, green, yellow, orange and red), the yellow/orange heavy-metal complexes play an important role for realizing full-color OLEDs as well as high-efficiency white OLEDs, and thus the development of highly efficient yellow/orange heavy-metal complexes is a pressing concern. In this article, we will review the progress on yellow/orange heavy-metal complexes as phosphors in OLEDs. The general principles and useful tactics for designing the yellow/orange heavy-metal complexes will be systematically summarized. The structure-property relationship and electrophosphorescence performance of the yellow/orange heavy-metal complexes in monochromatic phosphorescent OLEDs (PhOLEDs) and white OLEDs (WOLEDs) will be comprehensively surveyed and discussed.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources