Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul 3;16(13):3556-9.
doi: 10.1021/ol501509b. Epub 2014 Jun 13.

Redox-neutral α-sulfenylation of secondary amines: ring-fused N,S-acetals

Affiliations

Redox-neutral α-sulfenylation of secondary amines: ring-fused N,S-acetals

Claire L Jarvis et al. Org Lett. .

Abstract

Secondary amines react with thiosalicylaldehydes in the presence of catalytic amounts of acetic acid to generate ring-fused N,S-acetals in redox-neutral fashion. A broad range of amines undergo α-sulfenylation, including challenging substrates such morpholine, thiomorpholine, and piperazines. Computational studies employing density functional theory indicate that acetic acid reduces the energy barriers of two separate steps, both of which involve proton transfer.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Examples of bioactive N,S-acetals.
Scheme 1
Scheme 1. Selected Approaches to N,S-Acetals
Scheme 2
Scheme 2. Substrate Scope for the α-Sulfenylation
Reactions were performed on a 1 mmol scale. With 3 equiv of amine.
Scheme 3
Scheme 3. Regioselectivity of the α-Sulfenylation
Reactions were performed on a 1 mmol scale.
Figure 2
Figure 2
Free energy profile [in kcal·mol–1, M06-2X-D3/def2-TZVPP/IEFPCM//TPSS-D2/6-31+G(d,p)/IEFPCM] for uncatalyzed transformations of 6-O (black) and 6-S (red) and THIQ in toluene.
Figure 3
Figure 3
Calculated transition-state structures [M06-2X-D3/def2-TZVPP/IEFPCM//TPSS-D2/6-31+G(d,p)/IEFPCM], relative free energies (in kcal·mol–1), and selected bond lengths (in Å) for the uncatalyzed and acetic-acid-catalyzed transformation of 6-S and THIQ.

References

    1. Lombardino J. G.; McLamore W. M.; Lanbach G. D.. Derivatives of thiabenzopyrrocoline, thiabenzopyridocoline and thiazepine. US2985649A, 1961.
    2. Sammes P. G. Chem. Rev. 1976, 76, 113.
    3. Fodor L.; Szabó J.; Bernáth G.; Sohár P.; Maclean D. B.; Smith R. W.; Ninomiya I.; Naito T. J. Heterocycl. Chem. 1989, 26, 333.
    4. Cecchetti V.; Filipponi E.; Fravolini A.; Tabarrini O.; Xin T. Bioorg. Med. Chem. 1997, 5, 1339. - PubMed
    5. Deziel R.; Malenfant E. Bioorg. Med. Chem. Lett. 1998, 8, 1437. - PubMed
    6. Hilton S. T.; Motherwell W. B.; Potier P.; Pradet C.; Selwood D. L. Bioorg. Med. Chem. Lett. 2005, 15, 2239. - PubMed
    7. Song Z.-C.; Ma G.-Y.; Lv P. C.; Li H. Q.; Xiao Z. P.; Zhu H. L. Eur. J. Med. Chem. 2009, 44, 3903. - PubMed
    8. Gomez- Monterrey I.; Bertamino A.; Porta A.; Carotenuto A.; Musella S.; Aquino C.; Granata I.; Sala M.; Brancaccio D.; Picone D.; Ercole C.; Stiuso P.; Campiglia P.; Grieco P.; Ianelli P.; Maresca B.; Novellino E. J. Med. Chem. 2010, 53, 8319. - PubMed
    9. Kaur S. P.; Rao R.; Nanda S. Int. J. Pharm. Pharm. Sci. 2011, 3, 30.
    1. Selected examples for the synthesis of ring-fused N,S-acetals:

    2. Marsden R.; MacLean D. B.; Fodor L. Can. J. Chem. 1984, 62, 2682.
    3. Okada E.; Masuda R.; Hojo M.; Tone H.; Tomifuji T. Heterocycles 1994, 37, 157.
    4. Hucher N.; Decroix B.; Daïch A. J. Org. Chem. 2001, 66, 4695. - PubMed
    5. Hucher N.; Pesquet A.; Netchitaïlo P.; Daïch A. Eur. J. Org. Chem. 2005, 2758.
    6. Unsworth W. P.; Kitsiou C.; Taylor R. J. K. Org. Lett. 2013, 15, 258. - PubMed
    1. Other selected examples of N,S-acetal formation:

    2. Rothe M.; Steinberger R. Tetrahedron Lett. 1970, 11, 649.
    3. Rothe M.; Steinberger R. Tetrahedron Lett. 1970, 11, 2467.
    4. Mahata P. K.; Venkatesh C.; Syam Kumar U. K.; Ila H.; Junjappa H. J. Org. Chem. 2003, 68, 3966. - PubMed
    5. Ingle G. K.; Mormino M. G.; Wojtas L.; Antilla J. C. Org. Lett. 2011, 13, 4822. - PubMed
    6. Stojanović M.; Marković R.; Kleinpeter E.; Baranac-Stojanović M. Org. Biomol. Chem. 2012, 10, 575. - PubMed
    7. Li X.; Qin Z.; Yang T.; Zhang H.; Wei S.; Li C.; Chen H.; Meng M. Bioorg. Med. Chem. Lett. 2012, 22, 2712. - PubMed
    1. Reviews on redox-economy:

    2. Burns N. Z.; Baran P. S.; Hoffmann R. W. Angew. Chem., Int. Ed. 2009, 48, 2854. - PubMed
    3. Newhouse T.; Baran P. S.; Hoffmann R. W. Chem. Soc. Rev. 2009, 38, 3010. - PMC - PubMed
    1. Selected reviews on amine α-functionalization, including redox-neutral approaches:

    2. Murahashi S.-I. Angew. Chem., Int. Ed. Engl. 1995, 34, 2443.
    3. Matyus P.; Elias O.; Tapolcsanyi P.; Polonka-Balint A.; Halasz-Dajka B. Synthesis 2006, 2625.
    4. Campos K. R. Chem. Soc. Rev. 2007, 36, 1069. - PubMed
    5. Li C.-J. Acc. Chem. Res. 2009, 42, 335. - PubMed
    6. Jazzar R.; Hitce J.; Renaudat A.; Sofack-Kreutzer J.; Baudoin O. Chem.—Eur. J. 2010, 16, 2654. - PubMed
    7. Jones K. M.; Klussmann M. Synlett 2012, 23, 159.
    8. Pan S. C. Beilstein J. Org. Chem. 2012, 8, 1374. - PMC - PubMed
    9. Mitchell E. A.; Peschiulli A.; Lefevre N.; Meerpoel L.; Maes B. U. W. Chem.—Eur. J. 2012, 18, 10092. - PubMed
    10. Platonova A. Y.; Glukhareva T. V.; Zimovets O. A.; Morzherin Y. Y. Chem. Heterocycl. Compd. 2013, 49, 357.
    11. Prier C. K.; Rankic D. A.; MacMillan D. W. C. Chem. Rev. 2013, 113, 5322. - PMC - PubMed
    12. Peng B.; Maulide N. Chem.—Eur. J. 2013, 19, 13274. - PubMed
    13. Qin Y.; Lv J.; Luo S. Tetrahedron Lett. 2014, 55, 551.
    14. Wang L.; Xiao J. Adv. Synth. Catal. 2014, 356, 1137.
    15. Girard S. A.; Knauber T.; Li C.-J. Angew. Chem., Int. Ed. 2014, 53, 74. - PubMed
    16. Vo C.-V. T.; Bode J. W. J. Org. Chem. 2014, 79, 2809. - PubMed
    17. Haibach M. C.; Seidel D. Angew. Chem., Int. Ed. 2014, 53, 5010. - PubMed

Publication types