Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jan;116(1):37-46.
doi: 10.1111/bcpt.12281. Epub 2014 Jul 25.

Modulation of imatinib cytotoxicity by selenite in HCT116 colorectal cancer cells

Affiliations
Free article

Modulation of imatinib cytotoxicity by selenite in HCT116 colorectal cancer cells

Amal Kamal Abdel-Aziz et al. Basic Clin Pharmacol Toxicol. 2015 Jan.
Free article

Abstract

Imatinib is a principal therapeutic agent for targeting colorectal tumours. However, mono-targeting by imatinib does not always achieve complete cancer eradication. Selenite, a well-known chemopreventive agent, is commonly used in cancer patients. In this study, we aimed to explore whether selenite can modulate imatinib cytotoxicity in colorectal cancer cells. HCT116 cells were treated with different concentrations of imatinib and/or selenite for 24, 48 and 72 hr. Imatinib-selenite interaction was analysed using isobologram equation. As indicators of apoptosis, DNA fragmentation, caspase-3 activity, Bcl-2 expression were explored. Autophagic machinery was also checked by visualizing acidic vesicular organelles and measuring Beclin-1 expression. Furthermore, reactive oxygen and nitrogen species were also examined. This study demonstrated that selenite synergistically augmented imatinib cytotoxicity in HCT116 cells as demonstrated by combination and dose reduction indices. Supranutritional dose of selenite when combined with imatinib induced apoptotic machinery by decreasing Bcl-2 expression, increasing caspase-3 activity and subsequently fragmenting DNA and blunted cytoprotective autophagy by decreasing Beclin-1 expression and autophagosomes formation. Moreover, their combination induced cell cycle S-phase block, increased total thiol content and reduced nitric oxide levels. In conclusion, selenite synergizes imatinib cytotoxicity through multi-barrelled molecular targeting, providing a novel therapeutic approach for colorectal cancer.

PubMed Disclaimer

MeSH terms

LinkOut - more resources