Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun;58(2):149-59.

Effect of spinal manipulation on the development of history-dependent responsiveness of lumbar paraspinal muscle spindles in the cat

Affiliations

Effect of spinal manipulation on the development of history-dependent responsiveness of lumbar paraspinal muscle spindles in the cat

Dong-Yuan Cao et al. J Can Chiropr Assoc. 2014 Jun.

Abstract

We determined whether spinal manipulation could prevent and/or reverse the decrease and increase in paraspinal muscle spindle responsiveness caused respectively by lengthening and shortening histories of the lumbar muscles. Single unit spindle activity from multifidus and longissimus muscles was recorded in the L6 dorsal root in anesthetized cats. Muscle history was created and spinal manipulation delivered (thrust amplitude: 1.0mm, duration: 100ms) using a feedback-controlled motor attached to the L6 spinous process. Muscle spindle discharge to a fixed vertebral position (static test) and to vertebral movement (dynamic test) was evaluated following the lengthening and shortening histories. For the static test, changes in muscle spindle responsiveness were significantly less when spinal manipulation followed muscle history (p<0.01), but not when spinal manipulation preceded it (p>0.05). For the dynamic test, spinal manipulation did not significantly affect the history-induced change in muscle spindle responsiveness. Spinal manipulation may partially reverse the effects of muscle history on muscle spindle signaling of vertebral position.

Nous avons déterminé si les manipulations vertébrales pouvaient prévenir ou inverser la diminution et l’augmentation de la réactivité du fuseau musculaire paravertébral causé respectivement par les antécédents d’allongement et de raccourcissement des muscles lombaires. L’activité des fuseaux musculaires des muscles multifidus et longissimus prise isolément a été notée pour la racine dorsale de la vertèbre L6 chez des chats anesthésiés. Les muscles ont été soumis à un antécédent musculaire et la manipulation vertébrale a été effectuée (amplitude la pulsion : 1,0 mm, durée : 100 ms) au moyen d’un moteur contrôlé par rétroaction fixé à l’apophyse épineuse de L6. Les décharges du fuseau musculaire à une position vertébrale fixe (test statique) et au mouvement vertébral (test dynamique) ont été évaluées à la suite des antécédents d’allongement et de raccourcissement musculaires. Pour ce qui est du test statique, les changements dans la réactivité du fuseau musculaire étaient significativement moindres lorsque la manipulation vertébrale était effectuée après l’antécédent musculaire (p<0,01), ce qui n’était pas le cas lorsque la manipulation vertébrale la précédait (p>0,05). Pour ce qui est du test dynamique, la manipulation vertébrale n’a pas eu d’effet significatif sur le changement de la réactivité du fuseau musculaire provoqué par l’antécédent. La manipulation vertébrale peut partiellement inverser l’effet de l’antécédent musculaire sur la signalisation de la position vertébrale du fuseau musculaire.

Keywords: Muscle spindle; chiropractic; lumbar spine; muscle history; paraspinal muscle; proprioception; spinal manipulation; thixotropy.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic of the experimental protocol during 3 spinal manipulation conditions and a representative response (inset during the control condition) of one spindle to three the 3 muscle history conditions. Loading protocol shows the change in vertebral position relative to the intermediate position.
Figure 2
Figure 2
Mean discharge frequency of paraspinal muscle spindles for each of the 3 spinal manipulation conditions during the conditioning phase used to create muscle history. Conditioning phase identified graphically in left panel of figure 1. Each symbol represents the mean ± 95% confidence interval of 28 spindles.
Figure 3
Figure 3
Mean change in resting spindle afferent discharge during the static test for the 3 spinal manipulation conditions. Y-axis represents the change in muscle spindle discharge following the hold-long or hold-short compared with the hold-intermediate conditionings (ΔMIFlong or ΔMIFshort). Each symbol represents the mean ± 95% confidence interval of 28 spindles.
Figure 4
Figure 4
Mean change in spindle afferent discharge during the dynamic test for the 3 spinal manipulation conditions. Y-axis represents ΔMF averaged over the entire movement of the dynamic test. Each symbol represents the mean ± 95% confidence interval of 28 spindles.
Figure 5
Figure 5
Time course of changes in muscle spindle discharge during the dynamic test for hold-short compared with hold-intermediate (upper panel) and for hold-long compared with hold-intermediate (middle panel). Bottom panel shows the magnitude of the vertebral movement over which the dynamic test was analyzed. * p<0.05 compared with the spinal manipulation control condition. Each symbol represents the average value between its time position and the time position of the previous data point, except for 5% which represents the average value between its time position and time 0 s.

Similar articles

Cited by

References

    1. Farfan HF. The scientific basis of manipulation procedures. In: Buchanan WW, Kahn MF, Laine V, Rodnan GP, Scott JT, Zvaifler NJ, et al., editors. Clinics in rheumatic diseases. London: W.B. Saunders Company Ltd; 1980. pp. 159–77.
    1. Giles LGF. Anatomical Basis of Low Back Pain. Baltimore: Williams & Wilkins; 1989.
    1. Lewit K. Manipulative Therapy in Rehabilitation of the Locomotor System. Oxford: Butterworth-Heinemann; 1991.
    1. Haldeman S. The clinical basis for discussion of mechanisms of manipulative therapy. In: Korr IM, editor. The neurobiologic mechanisms in manipulative therapy. NY: Plenum; 1978. pp. 53–75.
    1. Vernon H. Biological rationale for possible benefits of spinal manipulation. 1997:105–115. AHCPR Publication No. 98-N002.

LinkOut - more resources