Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Mar 15;264(8):4304-11.

Tryptophanyl-tRNA synthetase from Bacillus subtilis. Characterization and role of hydrophobicity in substrate recognition

Affiliations
  • PMID: 2494170
Free article

Tryptophanyl-tRNA synthetase from Bacillus subtilis. Characterization and role of hydrophobicity in substrate recognition

Z J Xu et al. J Biol Chem. .
Free article

Abstract

The tryptophanyl-tRNA synthetase from Bacillus subtilis was purified to homogeneity and characterized. It has an alpha 2 subunit structure and a molecular weight of 77,000. Tryptophanyl-tRNA synthetase does not catalyze any significant proofreading. It activates tryptophan as well as the three fluorinated analogues, DL-4-fluoro-, DL-5-fluoro-, or DL-6-fluorotryptophan (4F-, 5F-, and 6F-Trp), in the ATP-pyrophosphate exchange reaction. In the aminoacylation reaction, the fluorotryptophans act as competitive inhibitors of Trp. Their relative activities follow the same order in both reactions: Trp greater than 4F-Trp greater than 6F-Trp greater than 5F-Trp. This order is the inverse of the order of relative hydrophobicities of these compounds, pointing to the importance of hydrophobic interactions in the selective recognition by tryptophanyl-tRNA synthetase among this group of substrates. To define the physical basis of the relative hydrophobicities, the crystallographic structure of 4F-Trp was determined and compared to that of trptophan. Charge distributions calculated for tryptophan and its different fluoroanalogues on the basis of molecular structures were supported by their carbon-13 NMR spectra. Correlations between charge distributions and relative hydrophobicities suggest that the polarity of the C-F bond represents an underlying factor determining the hydrophobicities of 4F-, 5F-, and 6F-Trp, thus relating tryptophanyl-tRNA synthetase selectivity toward tryptophan and its fluoroanalogues directly to their electronic configurations.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources