Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 19:14:79.
doi: 10.1186/1471-2288-14-79.

Systematic review of methods for individual patient data meta- analysis with binary outcomes

Affiliations

Systematic review of methods for individual patient data meta- analysis with binary outcomes

Doneal Thomas et al. BMC Med Res Methodol. .

Abstract

Background: Meta-analyses (MA) based on individual patient data (IPD) are regarded as the gold standard for meta-analyses and are becoming increasingly common, having several advantages over meta-analyses of summary statistics. These analyses are being undertaken in an increasing diversity of settings, often having a binary outcome. In a previous systematic review of articles published between 1999-2001, the statistical approach was seldom reported in sufficient detail, and the outcome was binary in 32% of the studies considered. Here, we explore statistical methods used for IPD-MA of binary outcomes only, a decade later.

Methods: We selected 56 articles, published in 2011 that presented results from an individual patient data meta-analysis. Of these, 26 considered a binary outcome. Here, we review 26 IPD-MA published during 2011 to consider: the goal of the study and reason for conducting an IPD-MA, whether they obtained all the data they sought, the approach used in their analysis, for instance, a two-stage or a one stage model, and the assumption of fixed or random effects. We also investigated how heterogeneity across studies was described and how studies investigated the effects of covariates.

Results: 19 of the 26 IPD-MA used a one-stage approach. 9 IPD-MA used a one-stage random treatment-effect logistic regression model, allowing the treatment effect to vary across studies. Twelve IPD-MA presented some form of statistic to measure heterogeneity across studies, though these were usually calculated using two-stage approach. Subgroup analyses were undertaken in all IPD-MA that aimed to estimate a treatment effect or safety of a treatment,. Sixteen meta-analyses obtained 90% or more of the patients sought.

Conclusion: Evidence from this systematic review shows that the use of binary outcomes in assessing the effects of health care problems has increased, with random effects logistic regression the most common method of analysis. Methods are still often not reported in enough detail. Results also show that heterogeneity of treatment effects is discussed in most applications.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Flowchart of the inclusion of Individual patients data meta-analyses.
Figure 2
Figure 2
Number of studies from which IPD were obtained.
Figure 3
Figure 3
Number of patients from which IPD were obtained.
Figure 4
Figure 4
Percentage of patients sought that were obtained.

References

    1. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–188. - PubMed
    1. Riley RD. Commentary: like it and lump it? Meta-analysis using individual participant data. Int J Epidemiol. 2010;39:1359–1361. - PubMed
    1. Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ. 2010;340:c221. - PubMed
    1. Ades AE, Lu G, Higgins JP. The interpretation of random-effects meta-analysis in decision models. Med Decis Making. 2005;25:646–654. - PubMed
    1. Riley RD, Lambert PC, Staessen JA, Wang J, Gueyffier F, Thijs L, Boutitie F. Meta-analysis of continuous outcomes combining individual patient data and aggregate data. Stat Med. 2008;27:1870–1893. - PubMed

Publication types

LinkOut - more resources