Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 19;8(6):e2928.
doi: 10.1371/journal.pntd.0002928. eCollection 2014 Jun.

A scabies mite serpin interferes with complement-mediated neutrophil functions and promotes staphylococcal growth

Affiliations

A scabies mite serpin interferes with complement-mediated neutrophil functions and promotes staphylococcal growth

Pearl M Swe et al. PLoS Negl Trop Dis. .

Erratum in

  • PLoS Negl Trop Dis. 2014 Nov;8(11):e3415

Abstract

Background: Scabies is a contagious skin disease caused by the parasitic mite Sarcoptes scabiei. The disease is highly prevalent worldwide and known to predispose to secondary bacterial infections, in particular by Streptococcus pyogenes and Staphylococcus aureus. Reports of scabies patients co-infected with methicillin resistant S. aureus (MRSA) pose a major concern for serious down-stream complications. We previously reported that a range of complement inhibitors secreted by the mites promoted the growth of S. pyogenes. Here, we show that a recently characterized mite serine protease inhibitor (SMSB4) inhibits the complement-mediated blood killing of S. aureus.

Methodology/principal findings: Blood killing of S. aureus was measured in whole blood bactericidal assays, counting viable bacteria recovered after treatment in fresh blood containing active complement and phagocytes, treated with recombinant SMSB4. SMSB4 inhibited the blood killing of various strains of S. aureus including methicillin-resistant and methicillin-sensitive isolates. Staphylococcal growth was promoted in a dose-dependent manner. We investigated the effect of SMSB4 on the complement-mediated neutrophil functions, namely phagocytosis, opsonization and anaphylatoxin release, by flow cytometry and in enzyme linked immuno sorbent assays (ELISA). SMSB4 reduced phagocytosis of S. aureus by neutrophils. It inhibited the deposition of C3b, C4b and properdin on the bacteria surface, but did not affect the depositions of C1q and MBL. SMSB4 also inhibited C5 cleavage as indicated by a reduced C5b-9 deposition.

Conclusions/significance: We postulate that SMSB4 interferes with the activation of all three complement pathways by reducing the amount of C3 convertase formed. We conclude that SMSB4 interferes with the complement-dependent killing function of neutrophils, thereby reducing opsonization, phagocytosis and further recruitment of neutrophils to the site of infection. As a consequence secreted scabies mites complement inhibitors, such as SMSB4, provide favorable conditions for the onset of S. aureus co-infection in the scabies-infected microenvironment by suppressing the immediate host immune response.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. SMSB4 reduces the blood killing of S. aureus strain Xen29 in whole blood (A) and pyoderma isolates of S. aureus (B).
SMSB4 promotes bacteria growth in a concentration dependent manner (C) similarly to CVF (D). S. aureus Xen29 or pyoderma isolates MRSA strains (HS16, M34), MSSA strains (HS56, M5) were harvested from mid-log growth phase culture. Bacteria (1×105 cfu/ml) were challenged with whole blood pre-treated with either 100 µg/ml SMSB4, positive control 10 µg/ml CVF, negative controls 100 µg/ml BSA or GVB2+ buffer only. S. aureus cells in PBS only without blood was also included to illustrate that the reduction in bacteria number was due to blood killing (A). Numbers of bacteria were counted as cfu/ml at various time points (A) or at 3 h (B, C, D). Bacterial recovery was calculated as a percentage of the challenge dose. Results are shown as means ± SEM from three independent experiments. The statistical significance of differences between samples was estimated using two way ANOVA with Tukey’s multiple comparison test. **, p<0.01; ***, p<0.001; ****, p<0.0001, ns, not significant (B).
Figure 2
Figure 2. SMSB4 reduces phagocytosis of S. aureus by neutrophils.
FITC-labeled bacteria (105 cfu) was opsonized either with 20% NHS or heated serum and challenged with neutrophils (106 cells). Serum samples were pre-treated for 30 min at 37°C with 50 µg/ml SMSB4, 50 µg/ml BSA (A), or various concentrations of SMSB4 or BSA (B). Uptake of FITC by neutrophils was measured at various time points over 1 h (A) or at 40 min (B). Results are shown as means ± SEM from three independent experiments.
Figure 3
Figure 3. SMSB4 reduces deposition of C3b (A) and MAC complex (SC5b-9) formation (B).
The wells of 96-well microtiter plates were coated with 100 µl aliquots of bacterial cell suspensions containing 5×106 cfu/ml of S. aureus. Wells were then incubated with 10% NHS which has been pre-treated with increasing concentrations of either SMSB4 or BSA. Antibodies were detected by ELISA using primary human specific antibodies, followed by HRP-conjugated secondary antibodies, and fluorescence was detected at 490 nm. Results are shown as means ± SEM from three independent experiments.
Figure 4
Figure 4. Effect of SMSB4 on the depositions of C4b (A), C1q, MBL and properdin (B) on S. aureus cells.
The wells of 96-well microtiter plates were coated with 100 µl aliquots of bacterial cell suspensions containing 5×106 cfu/ml of S. aureus. Wells were then incubated with 10% NHS which has been pre-treated with increasing concentrations of either SMSB4 or BSA. Antibodies were detected by ELISA using primary human specific antibodies, followed by HRP-conjugated secondary antibodies, and fluorescence was detected at 490 nm. Results are shown as means ± SEM from three independent experiments. The statistical significance of differences between BSA and SMSB4 treated samples were estimated using two way ANOVA with Sidak’s multiple comparison test. **, p<0.01; ***, p<0.001; ns, not significant (B).

References

    1. Engelman D, Kiang K, Chosidow O, McCarthy J, Fuller C, et al. (2013) Toward the global control of human scabies: introducing the International Alliance for the Control of Scabies. PLoS Negl Trop Dis 7: e2167. - PMC - PubMed
    1. Fuller LC (2013) Epidemiology of scabies. Curr Opin Infect Dis 26: 123–126. - PubMed
    1. Hay RJ, Steer AC, Engelman D, Walton S (2012) Scabies in the developing world–its prevalence, complications, and management. Clin Microbiol Infect 18: 313–323. - PubMed
    1. Clucas DB, Carville KS, Connors C, Currie BJ, Carapetis JR, et al. (2008) Disease burden and health-care clinic attendances for young children in remote aboriginal communities of northern Australia. Bull World Health Organ 86: 275–281. - PMC - PubMed
    1. Carapetis JR, Connors C, Yarmirr D, Krause V, Currie BJ (1997) Success of a scabies control program in an Australian aboriginal community. Pediatr Infect Dis J 16: 494–499. - PubMed

Publication types