Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 20:5:4147.
doi: 10.1038/ncomms5147.

Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films

Affiliations
Free article

Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films

Kenjiro Fukuda et al. Nat Commun. .
Free article

Abstract

Thin, ultra-flexible devices that can be manufactured in a process that covers a large area will be essential to realizing low-cost, wearable electronic applications including foldable displays and medical sensors. The printing technology will be instrumental in fabricating these novel electronic devices and circuits; however, attaining fully printed devices on ultra-flexible films in large areas has typically been a challenge. Here we report on fully printed organic thin-film transistor devices and circuits fabricated on 1-μm-thick parylene-C films with high field-effect mobility (1.0 cm(2) V(-1) s(-1)) and fast operating speeds (about 1 ms) at low operating voltages. The devices were extremely light (2 g m(-2)) and exhibited excellent mechanical stability. The devices remained operational even under 50% compressive strain without significant changes in their performance. These results represent significant progress in the fabrication of fully printed organic thin-film transistor devices and circuits for use in unobtrusive electronic applications such as wearable sensors.

PubMed Disclaimer

Publication types

LinkOut - more resources