Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 21:13:98.
doi: 10.1186/1476-511X-13-98.

Atorvastatin helps preserve pancreatic β cell function in obese C57BL/6 J mice and the effect is related to increased pancreas proliferation and amelioration of endoplasmic-reticulum stress

Affiliations

Atorvastatin helps preserve pancreatic β cell function in obese C57BL/6 J mice and the effect is related to increased pancreas proliferation and amelioration of endoplasmic-reticulum stress

Zhi-Yu Chen et al. Lipids Health Dis. .

Abstract

Background: 3-Hydroxy-3-methyl-glutaryl CoA (HMG-CoA) reductase inhibitors or statins are competitive inhibitors of the rate-limiting enzyme in cholesterol biosynthesis. Currently, statins are used as first-line therapy in the treatment of diabetic dyslipidemia. However, effects of statins on β cell function remains unclear. This study aims to examine effects of atorvastatin treatment on pancreatic β cell function in obese C57BL/6 J mice and the possible mechanisms.

Methods: Diet-induced obesity (DIO) C57BL/6 J mice were treated with atorvastatin (30 mg/kg/day) for 58 days. β cell function was assessed by hyperglycemic clamp and the area of insulin-positive β cells was examined by immunofluorescence. Gene expression was assessed by RT-PCR, and endoplasmic reticulum (ER) stress related proteins were examined by Western blot. Additionally, cell viability and apoptosis of the cholesterol-loaded NIT-1 cells were investigated after atorvastatin treatment.

Results: Hyperglycemic clamp study revealed that glucose infusion rate (GIR) and insulin stimulation ratio in atorvastatin-treated DIO mice were markedly higher than control mice (P < 0.05, P < 0.01 vs. con), indicating preserved β-cell sensitivity to glucose. Lipid profiles of plasma triglyceride (TG), pancreas TG and plasma cholesterol (CHO) were improved. Pancreas weight and weight index were improved significantly after atorvastatin treatment (P < 0.05 vs. con). Immunofluorescence results showed that atorvastatin-treated mice had significantly larger insulin-positive β cell area (P < 0.05 vs. con). Furthermore, RT-PCR and western blot showed that the mRNA and protein expression of pancreatic and duodenal homeobox 1 (Pdx1) in the pancreas were upregulated (P < 0.001, P < 0.01 vs. con). Moreover, the expression level of ER stress markers of activating transcription factor 4 (ATF4), CCAAT-enhancer-binding protein homologous protein (CHOP) and phosphorylated eukaryotic initiation factor 2α (eIF2α) were downregulated in the pancreas of atorvastatin-treated mice (P < 0.001, P < 0.01, P < 0.01 vs. con). Besides, atorvastatin protected the pancreatic β cell line of NIT-1 from cholesterol-induced apoptosis. Western blot showed increased expression of anti-apoptotic protein of B-cell lymphoma 2 (Bcl-2).

Conclusion: Pancreatic β cell function of obese C57BL/6 J mice was preserved after atorvastatin treatment, and this improvement may be attributed to enhanced pancreas proliferation and amelioration of pancreatic ER stress.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Atorvastatin improves the β-cell sensitivity to glucose in obese C57 mice and decreases fasting insulin level. Pancreatic beta cell function was evaluated by hyperglycemic clamp. After sampling (t = 0 min) for the assay of the basal blood glucose and insulin, animals received intravenously glucose bolus followed by a constant infusion of glucose to maintain plasma glucose level at 14 mmol/l. (A) Plasma glucose level, (B) Glucose infusion rates (GIR), (C) Plasma insulin level, (D) Insulin stimulation ratio, and (E) fasting insulin level. Results are means ± S.E.M. (n = 4-5). *P < 0.05, **P < 0.01 vs. control.
Figure 2
Figure 2
Atorvastatin helps preserving β-cell area in obese C57 mice. (A) H&E staining of pancreatic islets. (B) Fluorescent staining of insulin-expressing β-cells (FITC; 20×) in non-obese, obese mice with and without atorvastatin treatmen. (C) Quantification of area of insulin-expressing β-cells. Results are means ± S.E.M. (n = 3). *P < 0.05 vs. control.
Figure 3
Figure 3
Atorvastatin upregulates PDX-1 and LXR-β expression and downregulates the protein expressions of ER stress markers. Total RNA was extracted from the pancreas of C57 mice and analyzed by quantitative real-time PCR. A comparative threshold cycle (CT) method was used for relative quantification of gene expression using beta-actin for normalization. Measurements were carried out in triplicate for each sample. (A) Relative mRNA levels of PDX-1 and LXR-β in pancreatic cells. Western blot analysis of pancreatic (B) PDX-1 (C) phosphorylated eIF2α (D) ATF4 (E) CHOP in C57 mice compared in three groups. Beta actin served as loading control. Data represented the mean of at least three independent experiments ± S.E.M. **p < 0.01, ***p < 0.001 vs. control.
Figure 4
Figure 4
Atorvastatin attenuates cholesterol-induced apoptosis of NIT-1 cells. (A) Effects of atorvastatin alone on NIT-1 cell viability. (n = 3–5) (B) Reserved β-cell relative viability after addition of different concentrations (10-9 to 10-5 M) of atorvastatin under treatment with 0.125 mM cholesterol for 12 h. Values are means ± S.E.M. (n = 3). (C) NIT-1 cell apoptosis with or without treatment of cholesterol and in addition of 10-8 M atorvastatin incubation for 18 h. Results were detected by flow cytometry and quantification was made based on propidium iodide (PI) positive cells. (n = 3) (D) Protein expression of anti-apoptotic Bcl-2 in the pancreas. All the data were expressed as mean ± S.E.M. *P < 0.05, **P < 0.01, ***P < 0.001 vs. the CHO group; ##P < 0.01, ###P < 0.001 vs. control.

Similar articles

Cited by

References

    1. Tobert JA, Bell GD, Birtwell J, James I, Kukovetz WR, Pryor JS, Buntinx A, Holmes IB, Chao YS, Bolognese JA. Cholesterol-lowering effect of mevinolin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme a reductase, in healthy volunteers. J Clin Invest. 1982;69:913–919. - PMC - PubMed
    1. Mason RP, Walter MF, Day CA, Jacob RF. Intermolecular differences of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors contribute to distinctpharmacologic and pleiotropic actions. Am J Cardiol. 2005;96:11–23. - PubMed
    1. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360:7–22. - PubMed
    1. Lehto S, Rönnemaa T, Haffner SM, Pyörälä K, Kallio V, Laakso M. Dyslipidemia and hyperglycemia predict coronary heart disease events in middle-aged patients with NIDDM. Diabetes. 1997;46:1354–1359. - PubMed
    1. Grundy SM, Cleeman JI, Merz CN, Brewer HB Jr, Clark LT, Hunninghake DB, Pasternak RC, Smith SC Jr, Stone NJ. National Heart, Lung, and Blood Institute; American College of Cardiology Foundation; American Heart Association. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004;110:227–239. - PubMed

Publication types

MeSH terms