Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Aug;14(8):473.
doi: 10.1007/s11910-014-0473-5.

Diabetic neuropathy: mechanisms, emerging treatments, and subtypes

Affiliations
Review

Diabetic neuropathy: mechanisms, emerging treatments, and subtypes

James W Albers et al. Curr Neurol Neurosci Rep. 2014 Aug.

Abstract

Diabetic neuropathies (DNs) differ in clinical course, distribution, fiber involvement (type and size), and pathophysiology, the most typical type being a length-dependent distal symmetric polyneuropathy (DSP) with differing degrees of autonomic involvement. The pathogenesis of diabetic DSP is multifactorial, including increased mitochondrial production of free radicals due to hyperglycemia-induced oxidative stress. Mechanisms that impact neuronal activity, mitochondrial function, membrane permeability, and endothelial function include formation of advanced glycosylation end products, activation of polyol aldose reductase signaling, activation of poly(ADP ribose) polymerase, and altered function of the Na(+)/K(+)-ATPase pump. Hyperglycemia-induced endoplasmic reticulum stress triggers several neuronal apoptotic processes. Additional mechanisms include impaired nerve perfusion, dyslipidemia, altered redox status, low-grade inflammation, and perturbation of calcium balance. Successful therapies require an integrated approach targeting these mechanisms. Intensive glycemic control is essential but is insufficient to prevent onset or progression of DSP, and disease-modifying treatments for DSP have been disappointing. Atypical forms of DN include subacute-onset sensory (symmetric) or motor (asymmetric) predominant conditions that are frequently painful but generally self-limited. DNs are a major cause of disability, associated with reduced quality of life and increased mortality.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Proposed mechanisms of diabetic distal symmetric polyneuropathy (DSP). AGE advanced glycation end products, AR aldose reductase, CNF ciliary neurotrophic factor, COX-2 cyclooxygenase 2, ER endoplasmic reticulum, Hsp70 heat shock protein 70, IKKβ inhibitor of nuclear factor κB kinase subunit β, NF-kB nuclear factor κB, PARP poly(ADP ribose) polymerase, PKC protein kinase C. The neuron displayed in the figure was drawn by the Juvenile Diabetes Research Foundation (JDRF) for the University of Michigan Center for Diabetes Complications, and it is reproduced here with permission from Helen Nickerson, PhD, Senior Scientific Program Manager JDRF

Similar articles

Cited by

References

    1. Sinnreich M, Taylor BV, Dyck PJ. Diabetic neuropathies. Classification, clinical features, and pathophysiological basis. Neurologist. 2005;11:63–79. - PubMed
    1. Smith AG, Singleton JR. Diabetic neuropathy. Continuum. 2012;18:60–84. This is an excellent and detailed review of DN.

    1. Tracy JA, Engelstad JK, Dyck PJ. Microvasculitis in diabetic lumbosacral radiculoplexus neuropathy. J Clin Neuromuscul Dis. 2009;11:44–48. - PMC - PubMed
    1. Bansal V, Kalita J, Misra UK. Diabetic neuropathy. Postgrad Med J. 2006;82:95–100. - PMC - PubMed
    1. Tesfaye S, Boulton AJ, Dyck PJ, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33:2285–2293. - PMC - PubMed

MeSH terms