Accuracy-rate tradeoffs: how do enzymes meet demands of selectivity and catalytic efficiency?
- PMID: 24954689
- DOI: 10.1016/j.cbpa.2014.05.008
Accuracy-rate tradeoffs: how do enzymes meet demands of selectivity and catalytic efficiency?
Abstract
I discuss some physico-chemical and evolutionary aspects of enzyme accuracy (selectivity, specificity) and speed (turnover rate, processivity). Accuracy can be a beneficial side-product of active-sites being refined to proficiently convert a given substrate into one product. However, exclusion of undesirable, non-cognate substrates is also an explicitly evolved trait that may come with a cost. I define two schematic mechanisms. Ground-state discrimination applies to enzymes where selectivity is achieved primarily at the level of substrate binding. Exemplified by DNA methyltransferases and the ribosome, ground-state discrimination imposes strong accuracy-rate tradeoffs. Alternatively, transition-state discrimination, applies to relatively small substrates where substrate binding and chemistry are efficiently coupled, and evokes weaker tradeoffs. Overall, the mechanistic, structural and evolutionary basis of enzymatic accuracy-rate tradeoffs merits deeper understanding.
Copyright © 2014 Elsevier Ltd. All rights reserved.
Similar articles
-
Analysis of enzymatic transacylase Brønsted studies with application to the ribosome.Acc Chem Res. 2012 Apr 17;45(4):495-503. doi: 10.1021/ar100162b. Epub 2011 Nov 28. Acc Chem Res. 2012. PMID: 22122380 Review.
-
Murine DNA cytosine-C5 methyltransferase: pre-steady- and steady-state kinetic analysis with regulatory DNA sequences.Biochemistry. 1996 Jun 11;35(23):7308-15. doi: 10.1021/bi9600512. Biochemistry. 1996. PMID: 8652507
-
Two substrates are better than one: dual specificities for Dnmt2 methyltransferases.Trends Biochem Sci. 2006 Jun;31(6):306-8. doi: 10.1016/j.tibs.2006.04.005. Epub 2006 May 6. Trends Biochem Sci. 2006. PMID: 16679017 Review.
-
Enzyme promiscuity: a mechanistic and evolutionary perspective.Annu Rev Biochem. 2010;79:471-505. doi: 10.1146/annurev-biochem-030409-143718. Annu Rev Biochem. 2010. PMID: 20235827 Review.
-
Structure and function of mammalian DNA methyltransferases.Chembiochem. 2011 Jan 24;12(2):206-22. doi: 10.1002/cbic.201000195. Epub 2010 Nov 29. Chembiochem. 2011. PMID: 21243710 Review.
Cited by
-
The biosynthesis of the anti-microbial diterpenoid leubethanol in Leucophyllum frutescens proceeds via an all-cis prenyl intermediate.Plant J. 2020 Nov;104(3):693-705. doi: 10.1111/tpj.14957. Epub 2020 Aug 28. Plant J. 2020. PMID: 32777127 Free PMC article.
-
Use of chemical modification and mass spectrometry to identify substrate-contacting sites in proteinaceous RNase P, a tRNA processing enzyme.Nucleic Acids Res. 2016 Jun 20;44(11):5344-55. doi: 10.1093/nar/gkw391. Epub 2016 May 10. Nucleic Acids Res. 2016. PMID: 27166372 Free PMC article.
-
Design and in vitro realization of carbon-conserving photorespiration.Proc Natl Acad Sci U S A. 2018 Dec 4;115(49):E11455-E11464. doi: 10.1073/pnas.1812605115. Epub 2018 Nov 20. Proc Natl Acad Sci U S A. 2018. PMID: 30459276 Free PMC article.
-
Promiscuous Ribozymes and Their Proposed Role in Prebiotic Evolution.Chem Rev. 2020 Jun 10;120(11):4879-4897. doi: 10.1021/acs.chemrev.9b00620. Epub 2020 Feb 3. Chem Rev. 2020. PMID: 32011135 Free PMC article. Review.
-
Molecular Basis for K63-Linked Ubiquitination Processes in Double-Strand DNA Break Repair: A Focus on Kinetics and Dynamics.J Mol Biol. 2017 Nov 10;429(22):3409-3429. doi: 10.1016/j.jmb.2017.05.029. Epub 2017 Jun 3. J Mol Biol. 2017. PMID: 28587922 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources