Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 23;9(6):e100701.
doi: 10.1371/journal.pone.0100701. eCollection 2014.

The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model

Affiliations

The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model

Qi-Liang Mao-Ying et al. PLoS One. .

Abstract

Chemotherapy-induced peripheral neuropathy (CIPN) characterized by loss of sensory sensitivity and pain in hands and feet is the major dose-limiting toxicity of many chemotherapeutics. At present, there are no FDA-approved treatments for CIPN. The anti-diabetic drug metformin is the most widely used prescription drug in the world and improves glycemic control in diabetes patients. There is some evidence that metformin enhances the efficacy of cancer treatment. The aim of this study was to test the hypothesis that metformin protects against chemotherapy-induced neuropathic pain and sensory deficits. Mice were treated with cisplatin together with metformin or saline. Cisplatin induced increased sensitivity to mechanical stimulation (mechanical allodynia) as measured using the von Frey test. Co-administration of metformin almost completely prevented the cisplatin-induced mechanical allodynia. Co-administration of metformin also prevented paclitaxel-induced mechanical allodynia. The capacity of the mice to detect an adhesive patch on their hind paw was used as a novel indicator of chemotherapy-induced sensory deficits. Co-administration of metformin prevented the cisplatin-induced increase in latency to detect the adhesive patch indicating that metformin prevents sensory deficits as well. Moreover, metformin prevented the reduction in density of intra-epidermal nerve fibers (IENFs) in the paw that develops as a result of cisplatin treatment. We conclude that metformin protects against pain and loss of tactile function in a mouse model of CIPN. The finding that metformin reduces loss of peripheral nerve endings indicates that mechanism underlying the beneficial effects of metformin includes a neuroprotective activity. Because metformin is widely used for treatment of type II diabetes, has a broad safety profile, and is currently being tested as an adjuvant drug in cancer treatment, clinical translation of these findings could be rapidly achieved.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Effect of metformin on cisplatin- or paclitaxel-induced mechanical allodynia in mice.
A). Treatment schedule; X: injection; O: no treatment. B) Mice (n = 10–12/group) were treated with cisplatin (cumulative dose 23 mg/kg i.p.) and metformin (200 mg/kg/dose i.p.) as depicted in panel A. Mechanical allodynia was quantified with von Frey hairs using the up and down method. C). Effect of delayed metformin treatment on cisplatin-induced mechanical allodynia. Mice (n = 8/group) received i.p. injections with cisplatin (cumulative dose 23 mg/kg i.p.) and delayed metformin (200 mg/kg/dose i.p.) as depicted in panel A and mechanical allodynia was monitored. D). Mice (n = 4–7/group) were treated with paclitaxel (10 mg/kg/every other day, i.p. for two weeks) and metformin (200 mg/kg i.p. daily from one day before until one day after paclitaxel) and mechanical allodynia was measured. E). Change in body weight after cisplatin and metformin treatment. ** p<0.01 vs. Saline+Saline group; ## p<0.01 vs. Saline+Cisplatin; && p<0.01 vs. Saline+Paclitaxel.
Figure 2
Figure 2. Effect of metformin treatment on cisplatin-induced sensory deficits.
A). Mice (n = 6–10/group) were treated with cisplatin and metformin as described in Figure 1. The time to respond to an adhesive patch on the hind paw was monitored. B). Effect of delayed metformin on cisplatin induced sensory deficits (n = 7–8/group). C). Effect of cisplatin treatment on rotarod performance. Mice (n = 6/group) were treated with cisplatin and their performance on the rotarod was monitored as an index of motor coordination. E). Mice (n = 7/group) were treated with lidocaine (5 µL, 4% in saline) or saline and 10 mins. later, the time to respond to an adhesive patch on the hind paw was measured. * p<0.05, ** p<0.01 vs. Saline+Saline; # p<0.05 vs. Saline+Cisplatin.
Figure 3
Figure 3. Effect of metformin on loss of intraepidermal nerve fibers induced by cisplatin.
Mice (n =  4–6 per group) were treated with cisplatin and metformin as in figure 1. Paw biopsies obtained from the hind paw at 5 weeks after the start of treatment were stained for intraepidermal nerve fibers (PGP9.5; red) and collagen (green). (A) saline/saline; (B) saline/cisplatin; (C) metformin/cisplatin. White arrows indicate the intraepidermal nerve fibers stained by PGP9.5 (in red), which can clearly be seen crossing the basement membrane (in green) and extending as long lines into the epidermis. (D) Quantification of intraepidermal nerve fiber density. ** p<0.01 vs. Saline+Saline; ## p<0.01 vs. Saline+Cisplatin.

References

    1. Pachman DR, Barton DL, Watson JC, Loprinzi CL (2011) Chemotherapy-induced peripheral neuropathy: prevention and treatment. Clinical pharmacology and therapeutics 90: 377–387. - PubMed
    1. Cata JP, Weng HR, Lee BN, Reuben JM, Dougherty PM (2006) Clinical and experimental findings in humans and animals with chemotherapy-induced peripheral neuropathy. Minerva anestesiologica 72: 151–169. - PubMed
    1. Cata JP, Weng HR, Burton AW, Villareal H, Giralt S, et al. (2007) Quantitative sensory findings in patients with bortezomib-induced pain. The journal of pain: official journal of the American Pain Society 8: 296–306. - PubMed
    1. Melemedjian OK, Khoutorsky A, Sorge RE, Yan J, Asiedu MN, et al. (2013) mTORC1 inhibition induces pain via IRS-1-dependent feedback activation of ERK. Pain 154: 1080–1091. - PMC - PubMed
    1. Melemedjian OK, Asiedu MN, Tillu DV, Sanoja R, Yan J, et al. (2011) Targeting adenosine monophosphate-activated protein kinase (AMPK) in preclinical models reveals a potential mechanism for the treatment of neuropathic pain. Molecular pain 7: 70. - PMC - PubMed

Publication types

MeSH terms