Reading between the lines; understanding drug response in the post genomic era
- PMID: 24957465
- PMCID: PMC5528621
- DOI: 10.1016/j.molonc.2014.05.014
Reading between the lines; understanding drug response in the post genomic era
Abstract
Following the fanfare of initial, often dramatic, success with small molecule inhibitors in the treatment of defined genomic subgroups, it can be argued that the extension of targeted therapeutics to the majority of patients with solid cancers has stalled. Despite encouraging FDA approval rates, the attrition rates of these compounds remains high in early stage clinical studies, with single agent studies repeatedly showing poor efficacy In striking contrast, our understanding of the complexity of solid neoplasms has increased in huge increments, following the publication of large-scale genomic and transcriptomic datasets from large collaborations such as the International Cancer Genome Consortium (ICGC http://www.icgc.org/) and The Cancer Genome Atlas (TCGA http://cancergenome.nih.gov/). However, there remains a clear disconnect between these rich datasets describing the genomic complexity of cancer, including both intra- and inter-tumour heterogeneity, and what a treating oncologist can consider to be a clinically "actionable" mutation profile. Our understanding of these data is in its infancy and we still find difficulties ascribing characteristics to tumours that consistently predict therapeutic response for the majority of small molecule inhibitors. This article will seek to explore the recent studies of the patterns and impact of mutations in drug resistance, and demonstrate how we may use this data to reshape our thinking about biological pathways, critical dependencies and their therapeutic interruption.
Keywords: Drug resistance; Genomics; Therapeutics.
Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
References
-
- Awad, M.M. , Engelman, J.A. , Shaw, A.T. , 2013 Sep 19. Acquired resistance to crizotinib from a mutation in CD74-ROS1. N. Engl. J. Med. 369, (12) 1173 http://dx.doi.org/10.1056/NEJMc1309091. - DOI - PubMed
-
- Babij, C. , Zhang, Y. , Kurzeja, R.J. , Munzli, A. , Shehabeldin, A. , Fernando, M. , Quon, K. , Kassner, P.D. , Ruefli‐Brasse, A.A. , Watson, V.J. , Fajardo, F. , Jackson, A. , Zondlo, J. , Sun, Y. , Ellison, A.R. , Plewa, C.A. , San, M.T. , Robinson, J. , McCarter, J. , Schwandner, R. , Judd, T. , Carnahan, J. , Dussault, I. , 2011 Sep 1. STK33 kinase activity is nonessential in KRAS‐dependent cancer cells. Cancer Res. 71, (17) 5818–5826. http://dx.doi.org/10.1158/0008-5472.CAN-11-0778. Epub 2011 Jul 8 - DOI - PubMed
-
- Barretina, J. , Caponigro, G. , Stransky, N. , Venkatesan, K. , Margolin, A.A. , Kim, S. , Wilson, C.J. , Lehár, J. , Kryukov, G.V. , Sonkin, D. , Reddy, A. , Liu, M. , Murray, L. , Berger, M.F. , Monahan, J.E. , Morais, P. , Meltzer, J. , Korejwa, A. , Jané-Valbuena, J. , Mapa, F.A. , Thibault, J. , Bric-Furlong, E. , Raman, P. , Shipway, A. , Engels, I.H. , Cheng, J. , Yu, G.K. , Yu, J. , Aspesi, P. , de Silva, M. , Jagtap, K. , Jones, M.D. , Wang, L. , Hatton, C. , Palescandolo, E. , Gupta, S. , Mahan, S. , Sougnez, C. , Onofrio, R.C. , Liefeld, T. , MacConaill, L. , Winckler, W. , Reich, M. , Li, N. , Mesirov, J.P. , Gabriel, S.B. , Getz, G. , Ardlie, K. , Chan, V. , Myer, V.E. , Weber, B.L. , Porter, J. , Warmuth, M. , Finan, P. , Harris, J.L. , Meyerson, M. , Golub, T.R. , Morrissey, M.P. , Sellers, W.R. , Schlegel, R. , Garraway, L.A. , 2012 Mar 28. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Natur. 483, (7391) 603–607. http://dx.doi.org/10.1038/nature11003. - DOI - PMC - PubMed
-
- Chin, L.J. , Ratner, E. , Leng, S. , Zhai, R. , Nallur, S. , Babar, I. , Muller, R.U. , Straka, E. , Su, L. , Burki, E.A. , Crowell, R.E. , Patel, R. , Kulkarni, T. , Homer, R. , Zelterman, D. , Kidd, K.K. , Zhu, Y. , Christiani, D.C. , Belinsky, S.A. , Slack, F.J. , Weidhaas, J.B. , 2008 Oct 15. A SNP in a let‐7 microRNA complementary site in the KRAS 3' untranslated region increases non‐small cell lung cancer risk. Cancer Res. 68, (20) 8535–8540. http://dx.doi.org/10.1158/0008-5472.CAN-08-2129. - DOI - PMC - PubMed
-
- Choi, Y.L. , Soda, M. , Yamashita, Y. , Ueno, T. , Takashima, J. , Nakajima, T. , Yatabe, Y. , Takeuchi, K. , Hamada, T. , Haruta, H. , Ishikawa, Y. , Kimura, H. , Mitsudomi, T. , Tanio, Y. , Mano, H. , ALK Lung Cancer Study Group, 2010 Oct 28. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med. 363, (18) 1734–1739. http://dx.doi.org/10.1056/NEJMoa1007478. - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources